Skip to main content Accessibility help
×
Home

Glucomannan asymmetric membranes for wound dressing

  • Giovana Maria Genevro (a1), Reginaldo Jose Gomes Neto (a1), Letícia de Almeida Paulo (a2), Patrícia Santos Lopes (a2), Mariana Agostini de Moraes (a3) and Marisa Masumi Beppu (a1)...
  • Please note a correction has been issued for this article.

Abstract

Asymmetric membranes present promising characteristics for wound dressing applications. A porous structure uptakes the wound exudate, whereas an occlusive layer (upper film) inhibits the microbial penetration and prevents an excessive loss of water. Konjac glucomannan (KGM) is a natural polysaccharide that has been investigated as wound dressings in the form of films, sponges, and hydrogels due to its flexibility, swelling capacity, biocompatibility, and low cost. However, there are no studies on literature regarding the development of KGM asymmetric membranes. In this study, we investigated a new casting–freezing process for the production of KGM asymmetric membranes. The scanning electron microscopy and thermogravimetric analyses indicated an asymmetric morphology and a good thermal stability of the membrane samples, respectively. Moreover, biological, mechanical, and fluid-handling capacity tests showed that the membrane is biocompatible and resistant to handling structure, which was also able to retain the ideal moist conditions for wound healing.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: beppu@feq.unicamp.br

Footnotes

Hide All
b)

These authors contributed equally to this work.

This article has been corrected since its original publication. See doi:10.1557/jmr.2019.315.

Footnotes

References

Hide All
1.Morgado, P.I., Aguiar-Ricardo, A., and Correia, I.J.: Asymmetric membranes as ideal wound dressings: An overview on production methods, structure, properties, and performance relationship. J. Membr. Sci. 490, 139 (2015).
2.Whittam, A.J., Maan, Z.N., Duscher, D., Wong, V.W., Barrera, J.A., Januszyk, M., and Gurtner, G.C.: Challenges and opportunities in drug delivery for wound healing. Adv. Wound Care 5, 79 (2016).
3.Koehler, J., Brandl, F.P., and Goepferich, A.M.: Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 100, 1 (2018).
4.Pachuau, L.: Recent developments in novel drug delivery systems for wound healing. Expet Opin. Drug Deliv. 12, 1895 (2015).
5.Boateng, J.S., Matthews, K.H., Stevens, H.N.E., and Eccleston, G.M.: Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 97, 2892 (2008).
6.Xu, R., Xia, H., He, W., Li, Z., Zhao, J., Liu, B., Wang, Y., Lei, Q., Kong, Y., Bai, Y., Yao, Z., Yan, R., Li, H., Zhan, R., Yang, S., Luo, G., and Wu, J.: Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci. Rep. 6, 24596 (2016).
7.Hinrichs, W.L.J., Lommen, E., Wildevuur, C.R.H., and Feijen, J.: Fabrication and characterization of an asymmetric polyurethane membrane for use as a wound dressing. J. Appl. Biomater. 3, 287 (1992).
8.Chen, Y., Yan, L., Yuan, T., Zhang, Q., and Fan, H.: Asymmetric polyurethane membrane with in situ-generated nano-TiO2 as wound dressing. J. Appl. Polym. Sci. 119, 1532 (2011).
9.Mi, F.L., Wu, Y.B., Shyu, S.S., Schoung, J.Y., Huang, Y.B., Tsai, Y.H., and Hao, J.Y.: Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J. Biomed. Mater. Res. 59, 438 (2002).
10.Mi, F.L., Wu, Y.B., Shyu, S.S., Chao, A.C., Lai, J.Y., and Su, C.C.: Asymmetric chitosan membranes prepared by dry/wet phase separation: A new type of wound dressing for controlled antibacterial release. J. Membr. Sci. 212, 237 (2003).
11.Morgado, P.I., Lisboa, P.F., Ribeiro, M.P., Migue, S.P., Simoes, P.C., Correia, I.J., and Aguiar-Ricardo, A.: Poly(vinyl alcohol)/chitosan asymmetrical membranes: Highly controlled morphology toward the ideal wound dressing. J. Membr. Sci. 469, 262 (2014).
12.Tang, C., Guan, Y., Yao, S., and Zhu, Z.: Preparation of drug-loaded asymmetric chitosan films towards wound dressing using supercritical solution impregnation. Acta Polym. Sin. 6, 774 (2014).
13.Xu, H., Chang, J., Chen, Y., Fan, H., and Shi, B.: Asymmetric polyurethane membrane with inflammation-responsive antibacterial activity for potential wound dressing application. J. Mater. Sci. 48, 6625 (2013).
14.Xie, Y., Yi, Z-X., Wang, J-X., Hou, T-G., and Jiang, Q.: Carboxymethyl konjac glucomannan—Crosslinked chitosan sponges for wound dressing. Int. J. Biol. Macromol. 112, 12251233 (2018).
15.Mamani Chambi, H.N. and Ferreira Grosso, C.R.: Mechanical and water vapor permeability properties of biodegradables films based on methylcellulose, glucomannan, pectin and gelatin. Cienc. Tecnol. Aliment. 31, 739 (2011).
16.Shahbuddin, M., MacNeil, S., and Rimmer, S.: Synthesis and preparation of konjac glucomannan hydrogel for wound healing. J. Tissue Eng. Regener. Med. 6, 1 (2012).
17.Huang, Y-C., Chu, H-W., Huang, C-C., Wu, W-C., and Tsai, J-S.: Alkali-treated konjac glucomannan film as a novel wound dressing. Carbohydr. Polym. 117, 778 (2015).
18.Du, X., Yang, L., Ye, X., and Li, B.: Antibacterial activity of konjac glucomannan/chitosan blend films and their irradiation-modified counterparts. Carbohydr. Polym. 92, 1302 (2013).
19.Ni, X., Ke, F., Xiao, M., Wu, K., Kuang, Y., Corke, H., and Jiang, F.: The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels. Int. J. Biol. Macromol. 92, 1130 (2016).
20.Luo, X., He, P., and Lin, X.: The mechanism of sodium hydroxide solution promoting the gelation of Konjac glucomannan (KGM). Food Hydrocolloids 30, 92 (2013).
21.Li, Z., Su, Y., Xie, B., Liu, X., Gao, X., and Wang, D.: A novel biocompatible double network hydrogel consisting of konjac glucomannan with high mechanical strength and ability to be freely shaped. J. Mater. Chem. B 3, 1769 (2015).
22.ASTM: D882-02, Standard Test Method for Tensile Properties of Thin Plastic Sheeting (1995).
23.B. S. EN: 13726-1:2002, Test methods for primary wound dressings: Moisture Vapor Transmission Rate Permeable Film Dressings (2002).
24.Thomas, S. and Young, S.: Exudate-handling mechanisms of two foam-film dressings. J. Wound Care 17, 309 (2008).
25.Riss, T.L., Moravec, R.A., Niles, A.L., Duellman, S., Benink, H.A., Worzella, T.J., and Minor, L.: In eds., Sittampalam, G.S., Coussens, N.P., Brimacombe, K., Grossman, A., Arkin, M., Auld, D., Austin, C., Baell, J., Bejcek, B., Caaveiro, J.M.M., Chung, T.D.Y., Dahlin, J.L., Devanaryan, V., Foley, T.L., Glicksman, M., Hall, M.D., Haas, J.V., Inglese, J., Iversen, P.W., Kahl, S.D., Kales, S.C., Lal-Nag, M., Li, Z., McGee, J., McManus, O., Riss, T., Trask, O.J.O.J., Weidner, J.R., Wildey, M.J., Xia, M., and Xu, X. (Bethesda, MD, 2004).
26.I.S.O. 10993-5 (2009).
27.Ponce, A.G., Fritz, R., del Valle, C., and Roura, S.I.: Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT - Food Sci. Technol. 36, 679 (2003).
28.Wittaya-areekul, S. and Prahsarn, C.: Development and in vitro evaluation of chitosan-polysaccharides composite wound dressings. Int. J. Pharm. 313, 123 (2006).
29.Hollister, S.J.: Porous scaffold design for tissue engineering (vol 4, pg 518, 2005). Nat. Mater. 5, 590 (2006).
30.Yuan, N-Y., Lin, Y-A., Ho, M-H., Wang, D-M., Lai, J-Y., and Hsieh, H-J.: Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydr. Polym. 78, 349 (2009).
31.Kita, M., Ogura, Y., Honda, Y., Hyon, S.H., Cha, W.I., and Ikada, Y.: Evaluation of polyvinyl-alcohol hydrogel as a soft contact-lens material. Graefe’s Arch. Clin. Exp. Ophthalmol. 228, 533 (1990).
32.Ma, R. and Xiong, D.: Synthesis and properties of physically crosslinked poly(vinyl alcohol) hydrogels. J. China Univ. Min. Technol. 18, 4 (2008).
33.Yu, H., Huang, Y., Ying, H., and Xiao, C.: Preparation and characterization of a quaternary ammonium derivative of konjac glucomannan. Carbohydr. Polym. 69, 29 (2007).
34.Liu, L., Hu, D., Xu, G., Shou, L., and Yao, J.: Fabrication and evaluation of polyurethane-based asymmetric membranes. J. Mater. Sci. 48, 1902 (2013).
35.Elsner, J.J. and Zilberman, M.: Novel antibiotic-eluting wound dressings: An in vitro study and engineering aspects in the dressing’s design. J. Tissue Viability 19, 54 (2010).
36.Wang, K. and He, Z.M.: Alginate-konjac glucomannan-chitosan beads as controlled release matrix. Int. J. Pharm. 244, 117 (2002).
37.Silver, F.H., Freeman, J.W., and DeVore, D.: Viscoelastic properties of human skin and processed dermis. Skin Res. Technol. 7, 18 (2001).
38.Ní Annaidh, A., Bruyère, K., Destrade, M., Gilchrist, M.D., and Otténio, M.: Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 5, 139 (2012).
39.Hansen, B. and Jemec, G.B.: The mechanical properties of skin in osteogenesis imperfecta. Arch. Dermatol. 138, 909 (2002).
40.Banker Gilbert, S.: Film coating theory and practice. J. Pharm. Sci. 55, 81 (1966).
41.Yannas, I.V., Burke, J.F., Warpehoski, M., Stasikelis, P., Skrabut, E.M., Orgill, D.P., and Giard, D.: Biomaterials: Interfacial Phenomena and Applications (American Chemical Society, Washington DC, 1982); pp. 475481.
42.Ruiz-Cardona, L., Sanzgiri, Y.D., Benedetti, L.M., Stella, V.J., and Topp, E.M.: Application of benzyl hyaluronate membranes as potential wound dressings: Evaluation of water vapour and gas permeabilities. Biomaterials 17, 1639 (1996).
43.Lamke, L.O., Nilsson, G.E., and Reithner, H.L.: The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns 3, 159 (1977).
44.Zhu, W., Li, J., Lei, J., Li, Y., Chen, T., Duan, T., Yao, W., Zhou, J., Yu, Y., and Liu, Y.: Silver nanoparticles incorporated konjac glucomannan-montmorillonite nacre-like composite films for antibacterial applications. Carbohydr. Polym. 197, 253 (2018).
45.Lu, J., Wang, X., and Xiao, C.: Preparation and characterization of konjac glucomannan/poly(diallydimethylammonium chloride) antibacterial blend films. Carbohydr. Polym. 73, 427 (2008).
46.Spolidorio, D.M.P. and Duque, C.: Microbiologia e Imunologia Geral e Odontológica: Série Abeno: Odontologia Essencial—Parte Básica, Vol. 2 (Artes Médicas Editora, Sao Paulo, Brazil, 2013).

Keywords

Glucomannan asymmetric membranes for wound dressing

  • Giovana Maria Genevro (a1), Reginaldo Jose Gomes Neto (a1), Letícia de Almeida Paulo (a2), Patrícia Santos Lopes (a2), Mariana Agostini de Moraes (a3) and Marisa Masumi Beppu (a1)...
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: