Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T10:08:04.387Z Has data issue: false hasContentIssue false

Glass formation, thermal properties, and elastic constants of La–Al–Co alloys

Published online by Cambridge University Press:  31 January 2011

Jin Man Park
Affiliation:
Institute for Complex Materials, IFW Dresden, D-01171 Dresden, Germany
Tao Zhang
Affiliation:
Department of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Jürgen Eckert*
Affiliation:
Institute for Complex Materials, IFW Dresden, D-01171 Dresden, Germany; and Institute of Materials Science, TU Dresden, D-01062 Dresden, Germany
*
b)This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy
Get access

Abstract

The compositional dependence of glass formation and thermal and elastic properties was clarified for the ternary La–Al–Co bulk glass-forming system. The existing linear correlation between La concentration and characteristic temperatures, i.e., the glass transition temperature Tg and the onset temperature of crystallization Tx, as well as the elastic moduli in this system can give a useful guideline for the chemical design of desirable bulk metallic glasses (BMGs) with tunable physical properties in advance. The relationship between Tg and elastic constants for the La–Al–Co BMGs can be quantitatively described using a microscopic model proposed by T. Egami.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chen, H.S.Glassy metals. Rep. Prog. Phys. 43, 353 (1980)CrossRefGoogle Scholar
2.Inoue, A.Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000)CrossRefGoogle Scholar
3.Wang, W.H., Dong, C., Shek, C.H.Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004)CrossRefGoogle Scholar
4.Debenedetti, P.G., Stillinger, F.H.Supercooled liquids and the glass transition. Nature 410, 259 (2001)CrossRefGoogle ScholarPubMed
5.Turnbull, D.Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969)CrossRefGoogle Scholar
6.Inoue, A., Zhang, T., Masumoto, T.Glass-forming ability of alloy. J. Non-Cryst. Solids 156–158, 473 (1993)CrossRefGoogle Scholar
7.Lu, Z.P., Liu, C.T.A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002)CrossRefGoogle Scholar
8.Davies, H.A., Lewis, B.G.Generalized kinetic approach to metallic glass formation. Scr. Metall. 9, 1107 (1975)CrossRefGoogle Scholar
9.Takeuchi, A., Inoue, A.Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater. Trans., JIM 41, 1372 (2000)CrossRefGoogle Scholar
10.Gorsse, S., Orveillon, G., Senkov, O.N., Miracle, D.B.Thermodynamic analysis of glass-forming ability in a Ca–Mg–Zn ternary alloy system. Phys. Rev. B 73, 224202 (2006)CrossRefGoogle Scholar
11.Xia, L., Fang, S.S., Wang, Q., Dong, Y.D., Liu, C.T.Thermodynamic modeling of glass formation in metallic glasses. Appl. Phys. Lett. 88, 171905 (2006)CrossRefGoogle Scholar
12.Li, R., Pang, S.J., Ma, C.L., Zhang, T.Influence of similar atom substitution on glass formation in (La–Ce)–Al–Co bulk metallic glasses. Acta Mater. 55, 3719 (2007)CrossRefGoogle Scholar
13.Cao, H.B., Ma, D., Hsieh, K.C., Ding, L., Stratton, W.G., Voyles, P.M., Pan, Y., Cai, M.D., Dickinson, J.T., Chang, Y.A.Computational thermodynamics to identify Zr–Ti–Ni–Cu–Al alloys with high glass-forming ability. Acta Mater. 54, 2975 (2006)CrossRefGoogle Scholar
14.Cheney, J., Vecchio, K.Prediction of glass-forming compositions using liquidus temperature calculations. Mater. Sci. Eng., A 471, 135 (2007)CrossRefGoogle Scholar
15.Ji, X.L., Pan, Y.Predicting alloy compositions of bulk metallic glasses with high glass-forming ability. Mater. Sci. Eng., A 485, 154 (2008)CrossRefGoogle Scholar
16.Egami, T., Waseda, Y.Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984)CrossRefGoogle Scholar
17.Kiminami, C.S., Lisboa, R.D.S., de Oliveira, M.F., Bolfarini, C., Botta, W.J.Topological instability as a criterion for design and selection of easy glass-former compositions in Cu–Zr based systems. Mater. Trans. 48, 1739 (2007)CrossRefGoogle Scholar
18.Miracle, D.B.The efficient cluster packing model—An atomic structural model for metallic glasses. Acta Mater. 54, 4317 (2006)CrossRefGoogle Scholar
19.Miracle, D.B.A structural model for metallic glasses. Nat. Mater. 3, 697 (2004)CrossRefGoogle ScholarPubMed
20.Wang, A.P., Wang, J.Q., Ma, E.Modified efficient cluster packing model for calculating alloy compositions with high glass forming ability. Appl. Phys. Lett. 90, 121912 (2007)CrossRefGoogle Scholar
21.Cheney, J., Vecchio, K.Evaluation of glass-forming ability in metals using multi-model techniques. J. Alloys Compd. 471, 222 (2009)CrossRefGoogle Scholar
22.de Oliveira, M.F., Aliaga, L.C.R., Bolfarini, C., Botta, W.J., Kiminami, C.S.Thermodynamic and topological instability approaches for forecasting glass-forming ability in the ternary Al-Ni-Y system. J. Alloys Compd. 464, 118 (2008)CrossRefGoogle Scholar
23.Rouxel, T.Elastic properties and short-to medium-range order in glasses. J. Am. Ceram. Soc. 90, 3019 (2007)CrossRefGoogle Scholar
24.Wang, W.H.Elastic properties and short-to medium-range order in glasses. J. Non-Cryst. Solids 351, 1481 (2005)CrossRefGoogle Scholar
25.Wang, W.H.Correlations between elastic moduli and properties in bulk metallic glasses. J. Appl. Phys. 99, 093506 (2006)CrossRefGoogle Scholar
26.Novikov, V.N., Sokolov, A.P.Poisson's ratio and the fragility of glass-forming liquids. Nature 431, 961 (2004)CrossRefGoogle ScholarPubMed
27.Battezzati, L.Is there a link between melt fragility and elastic properties of metallic glasses? Mater. Trans. 46, 2915 (2005)CrossRefGoogle Scholar
28.Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X., Wang, W.H.Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007)CrossRefGoogle ScholarPubMed
29.Gu, X.J., McDermott, A.G., Poon, S.J., Shiflet, G.J.Critical Poisson's ratio for plasticity in Fe–Mo–C–B–Ln bulk amorphous steel. Appl. Phys. Lett. 88, 211905 (2006)CrossRefGoogle Scholar
30.Duan, G., Lind, M.L., De Blauwe, K., Wiest, A., Johnson, W.L.Thermal and elastic properties of Cu–Zr–Be bulk metallic glass forming alloys. Appl. Phys. Lett. 90, 211901 (2007)CrossRefGoogle Scholar
31.Johnson, W.L., Demetriou, M.D., Harmon, J.S., Lind, M.L., Samwer, K.Rheology and ultrasonic properties of metallic glass-forming liquids: A potential energy landscape perspective. MRS Bull. 32, 644 (2007)CrossRefGoogle Scholar
32.Inoue, A., Zhang, T., Masumoto, T.Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method. Trans. JIM 31, 425 (1990)Google Scholar
33.Matsubara, E., Tamura, T., Waseda, Y., Zhang, T., Inoue, A., Masumoto, T.An anomalous x-ray structural study of an amorphous La55Al25Ni20 alloy with supercooled liquid region. J. Non-Cryst. Solids 150, 380 (1992)CrossRefGoogle Scholar
34.Zhang, T., Tsai, A.P., Inoue, A., Masumoto, T.Production of amorphous alloy balloons by utilizing viscous flowability. Sci. Rep. RITU A36, 261 (1992)Google Scholar
35.Zhang, Y., Li, Y., Tan, H., Chen, G.L., Davies, H.A.Production of amorphous alloy balloons by utilizing viscous flowability. J. Non-Cryst. Solids 352, 5482 (2006)CrossRefGoogle Scholar
36.Zhang, T., Li, R., Pang, S.J.Effect of similar elements on improving glass-forming ability of La–Ce-based alloys. J. Alloys Compd. 483, 60 (2009)CrossRefGoogle Scholar
37.Massalski, T.B., Okamoto, H., Subramanian, R.P., Kacprzak, L.Binary Alloy Phase Diagrams 2nd ed (ASM International, Materials Park, OH 1991)1Google Scholar
38.Krautkramer, J., Krautkramer, H.Ultrasonic Testing of Materials 4th ed (Springer, Berlin, Heidelberg, NY 1990)13 533CrossRefGoogle Scholar
39.Petzow, G., Effenberg, G.Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams (VCH Verlagsgesellschaft mbH, Weinheim 1991)1Google Scholar
40.Kumar, G., Tang, H.X., Schroers, J.Nanomoulding with amorphous metals. Nature 457, 868 (2009)CrossRefGoogle ScholarPubMed
41.Zhang, B., Zhao, D.Q., Pan, M.X., Wang, W.H., Greer, A.L.Amorphous metallic plastic. Phys. Rev. Lett. 94, 205502 (2005)CrossRefGoogle ScholarPubMed
42.Tan, H., Zhang, Y., Ma, D., Feng, Y.P., Li, Y.Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La–Al–(Cu,Ni) pseudo ternary system. Acta Mater. 51, 4551 (2003)CrossRefGoogle Scholar
43.Yang, Q., Pang, S.J., Li, R., Zhang, T.Effect of coexistence of similar elements La and Ce on formation of (La–Ce)–Al–Cu bulk metallic glasses. Int. J. Mod. Phys. B 23, 1235 (2009)CrossRefGoogle Scholar
44.Li, R., Yang, Q., Pang, S.J., Ma, C.L., Zhang, T.Misch metal based metallic glasses. J. Alloys Compd. 450, 181 (2008)CrossRefGoogle Scholar
45.Fornell, J., Suriñach, S., Baró, M.D., Sort, J.Unconventional elastic properties, deformation behavior and fracture characteristics of newly developed rare earth bulk metallic glasses. Intermetallics 17, 1090 (2009)CrossRefGoogle Scholar
46.Wang, W.H., Bai, H.Y., Luo, J.L., Wang, R.J., Jin, D.Intrinsic plasticity or brittleness of metallic glasses. Phys. Rev. B 62, 25 (2000)CrossRefGoogle Scholar
47.Lewandowski, J.J., Wang, W.H., Greer, A.L.Critical Poisson's ratio for plasticity in Fe–Mo–C–B–Ln bulk amorphous steel. Philos. Mag. Lett. 85, 77 (2005)Google Scholar
48.Inoue, A., Takeuchi, A.Recent progress in bulk glassy alloys. Mater. Trans. 43, 1892 (2002)CrossRefGoogle Scholar
49.Dyre, J.C., Olsen, N.B., Christensen, T.Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids. Phys. Rev. B 53, 2171 (1996)CrossRefGoogle ScholarPubMed
50.Egami, T., Poon, S.J., Zhang, Z., Keppens, V.Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network. Phys. Rev. B 76, 024203 (2007)CrossRefGoogle Scholar