Skip to main content Accessibility help
×
Home

Generation and annihilation of antiphase domain boundaries in GaAs on Si grown by molecular beam epitaxy

  • A. Georgakilas (a1), J. Stoemenos (a2), K. Tsagaraki (a1), Ph. Komninou (a2), N. Flevaris (a2), P. Panayotatos (a3) and A. Christou (a4)...

Abstract

A comprehensive investigation of antiphase domain boundaries (APB's) in GaAs-on-Si is presented. A comprehensive experimental approach, based on complementary electron microscopy (TEM and SEM) and chemical etch techniques, is developed and used in the study of the structural evolution of APB's on vicinal (001)Si substrates. The question of whether a GaAs selective nucleation or APB annihilation accounts for the absence of APB's in thick GaAs/Si films, grown on substrates misoriented from (001) toward (110), is addressed. APB's are revealed by two different TEM techniques to exist in the first interfacial layers of GaAs/Si even in samples considered to be “APB free”. The APB annihilation mechanism is illustrated in GaAs films grown on substrates misoriented toward (100), either directly, by cross-sectional TEM observations, or indirectly, by combined chemical etch/SEM experiments. In addition, the structural characteristics of APB's and their interaction with other extended crystal defects are clarified by XTEM and TEM observations. Finally, the influence of APB's on GaAs/Si surface morphology and their electrical activity are shown explicitly for the first time.

Copyright

References

Hide All
1Heteroepitaxy on Silicon, edited by Fan, J.C. C. and Poate, J. M. (Mater. Res. Soc. Symp. Proc. 67, Pittsburgh, PA, 1986).
2Heteroepitaxy on Silicon II, edited by Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y. (Mater. Res. Soc. Symp. Proc. 91, Pittsburgh, PA, 1987).
3Heteroepitaxy on Silicon: Fundamentals, Structures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988).
4Chand, N., Ren, F., Macrander, A. T., Ziel, J. P. van der, Sergent, A. M., Hull, R., Chu, S. N. G., Chen, Y. K., and Lang, D. V., J. Appl. Phys. 67, 2343 (1990).
5Kroemer, H., in Heteroepitaxy on Silicon, edited by Fan, J. C. C. and Poate, J. M. (Mater. Res. Soc. Symp. Proc. 67, Pittsburgh, PA, 1986), p. 3.
6Uppal, P.N. and Kroemer, H., J. Appl. Phys. 58, 2195 (1985).
7Kroemer, H., in Proc. 14th Int. Symp. on Gallium Arsenide and Related Compounds, Heraklion, Greece, Sept. 1987, edited by Christou, A. and Rupprecht, H. S. (Inst. Phys. Conf. Ser., Bristol, United Kingdom, 1988), Vol. 91, p. 27.
8Bobb, L. C., Holloway, H., and Maxwell, K. H., J. Appl. Phys. 37, 4687 (1966).
9Holt, D. B., J. Phys. Chem. Solids 30, 1297 (1969).
10Petroff, P.M., J. Vac. Sci. Technol. B 4, 874 (1986).
11Kawabe, M. and Ueda, T., Jpn. J. Appl. Phys. 25, L285 (1986).
12Akiyama, M., Kawarada, Y., Ueda, T., Nishi, S., and Kaminishi, K., J. Cryst. Growth 77, 490 (1986).
13Bringans, R.D., Olmstead, M.A., Ponce, F.A., Biegelsen, D.K., Krusor, B. S., and Yingling, R. D., J. Appl. Phys. 64, 3472 (1988).
14Okumura, H., Suzuki, Y., Miki, K., Sakamoto, K., Sakamoto, T., Misawa, S., and Yoshida, S., J. Vac. Sci. Technol. B 7, 481 (1989).
15Kawanami, H., Hatayama, A., Nagai, K., and Hayashi, Y., Jpn. J. Appl. Phys. 26, L173 (1987).
16Kawabe, M. and Ueda, T., Jpn. J. Appl. Phys. 26, L944 (1987).
17Pukite, P.R. and Cohen, P.I., Appl. Phys. Lett. 50, 1739 (1987).
18Mizuguchi, K., Hayafuji, N., Ochi, S., Murotani, T., and Fujikawa, K., J. Cryst. Growth 77, 509 (1986).
19Noge, H., Kano, H., Kato, T., Hashimoto, M., and Igarashi, I., J. Appl. Phys. 64, 2246 (1988).
20Fang, S. F., Adomi, K., Iyer, S., Morkoc, H., Zabel, H., Choi, C., and Otsuka, N., J. Appl. Phys. 68, R31 (1990); also, R. Fischer, H. Morkoc., D. A. Neumann, H. Zabel, C. Choi, N. Otsuka, M. Longerbone, and L. P. Erickson, J. Appl. Phys. 60, 1640 (1986).
21Lo, Y.H., Wu, M.C., Lee, H., Wang, S., and Liliental-Weber, Z., Appl. Phys. Lett. 52, 1386 (1988).
22Humphreys, T. P., Das, K., Posthill, J. B., Tarn, J. C. L., Jaing, B. L., Wortman, J. J., and Parikh, N. R., Jpn. J. Appl. Phys. 27, 1458 (1988).
23Posthill, J. B., Tarn, J. C. L., Das, K., Humphreys, T. P., and Parikh, N. R., Appl. Phys. Lett. 53, 1207 (1988).
24Nauka, K., Reid, G. A., and Liliental-Weber, Z., Appl. Phys. Lett. 56, 376 (1990).
25Chu, S.N. G., Nakahara, S., Pearton, S.J., Boone, T., and Vernon, S. M., J. Appl. Phys. 64, 2981 (1988).
26Ueda, O., Soga, T., Jimbo, T., and Umeno, M., Appl. Phys. Lett. 55, 445 (1989).
27Panayotatos, P., Georgakilas, A., Mourrain, J-L., and Christou, A., in Physical Concepts ofMaterials for Novel Optoelectronic Device Applications I, edited by Razeghi, M. (Proc. SPIE, Bellingham, WA, 1990), Part II, Vol. 1361, p. 1100.
28Georgakilas, A., Panayotatos, P., Stoemenos, J., Mourrain, J-L., and Christou, A., J. Appl. Phys. 71, 2679 (1992).
29Georgakilas, A., Tsagaraki, K., and Christou, A., Mater. Lett. 10, 525 (1991).
30Cho, N-H., Cooman, B. C. De, Carter, C. B., Fletcher, R., and Wagner, D. K., Appl. Phys. Lett. 47, 879 (1985).
31Morizane, K., J. Cryst. Growth 38, 249 (1977).
32Rasmussen, D.R., McKernan, S., and Carter, C. B., Philos. Mag. 63, 1299 (1991).
33Cheng, T. T., Pirouz, P., and Ernst, F., in Advances in Materials, Processing and Devices in III-V Compound Semiconductors, edited by Sadana, D. K., Eastman, L. F., and Dupuis, R. (Mater. Res. Soc. Symp. Proc. 144, Pittsburgh, PA, 1989).
34Pirouz, P., Ernst, F., and Cheng, T. T., in Heteroepitaxy on Silicon: Fundamentals, Structures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988), p. 57.
35Christou, A., Stoemenos, J., Flevaris, N., Komninou, Ph., and Georgakilas, A., J. Appl. Phys. 68, 3298 (1990).
36Matthews, J. W., in Dislocations in Solids, edited by Nabarro, F. R.N. (North-Holland, Amsterdam, 1979), Vol. 2, Chap. 7.
37Gevers, R., Philos. Mag. 7, 1681 (1962); also, R. Gevers, Phys. Status Solidi 3, 1214 (1963).
38Balluffi, R. W., Sass, S. L., and Schober, T., Philos. Mag. 26, 585 (1972).
39Spyridelis, J., Delavignette, P., and Amelinckx, S., Mater. Res. Bull. II, 615 (1967).
40Griffith, J. E., Kubby, J. A., Wierenga, P. E., and Kochanski, G. P., in Heteroepitaxy on Silicon: Fundamentals, Structures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988), p. 27.
41Rocher, A., Charasse, M-N., Bartenlian, B., and Chazelas, J., Colloque de Physique, Colloq. Cl, suppl. au no. 1, tome 51, Cl915 (1989).
42Zhu, J.G., McKernan, S., Carter, C.B., Schaff, W.J., and Eastman, L.F., in Advances in Materials, Processing and Devices in III-V Compound Semiconductors, edited by Sadana, D. K., Eastman, L. F., and Dupuis, R. (Mater. Res. Soc. Symp. Proc. 144, Pittsburgh, PA, 1989), p. 285; also J.G. Zhu and C.B. Carter, Philos. Mag. A 62, 319 (1990).
43Amelinckx, S., in The Direct Observation of Dislocations, Solid State Physics (Academic Press, New York, 1964), p. 308.
44Stoemenos, J., Komninou, Ph., Karakostas, Th., Georgakilas, A., and Christou, A., in Proc. 6th Int. Conf. on Intergranular and Interphase Boundaries in Materials, Thessaloniki, Greece, June 21–26, 1992, edited by Komninou, Ph. and Rocher, A., to be published in Materials Science Forum.
45Gonzalez, Y., Gonzalez, L., and Briones, F., Jpn. J. Appl. Phys. 30, L235 (1991).
46Freundlich, A., Leycuras, A., Grenet, J. C., and Grattepain, C., Appl. Phys. Lett. 53, 2635 (1988).

Generation and annihilation of antiphase domain boundaries in GaAs on Si grown by molecular beam epitaxy

  • A. Georgakilas (a1), J. Stoemenos (a2), K. Tsagaraki (a1), Ph. Komninou (a2), N. Flevaris (a2), P. Panayotatos (a3) and A. Christou (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed