Skip to main content Accessibility help
×
Home

Functionalization of petroleum coke-based mesoporous carbon for synergistically enhanced capacitive performance

  • Jufeng Huang (a1), Wei Xing (a1), Fazle Subhan (a2), Xiuli Gao (a3), Peng Bai (a3), Zhen Liu (a3), Youhe Wang (a1), Qingzhong Xue (a1) and Zifeng Yan (a3)...

Abstract

With increasing output of petroleum coke, the value-added exploitation of petroleum coke has become a tough problem. Preparing porous carbons is a traditional way to the value-added exploitation of petroleum coke. Here, we used a facile and efficient hard-templating strategy to synthesize mesoporous carbon with high surface area from petroleum coke. N2 adsorption analyses show that the BET specific area and pore volume of the carbons can reach up to 864 m2/g and 1.37 cm3/g, respectively. To utilize the abundant mesopores of the carbons, anthraquinone-modified mesoporous carbon was tested as an electrode material for supercapacitor applications. Electrochemical measurements demonstrated that the specific capacitance reached up to 366 F/g at the current density of 1 A/g, indicating a promising prospect of using this carbon in electrochemical energy-storage field. More importantly, the strategy used in this work can be easily modified to prepare other nano-carbon materials from petroleum coke.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: xingwei@upc.edu.cn

Footnotes

Hide All

Contributing Editor: Mauricio Terrones

Footnotes

References

Hide All
1. Al-Haj-Ibrahim, H. and Morsi, B.I.: Desulfurization of petroleum coke: A review. Ind. Eng. Chem. Res. 31(8), 1835 (1992).
2. Rambabu, N., Azargohar, R., Dalai, A.K., and Adjaye, J.: Evaluation and comparison of enrichment efficiency of physical/chemical activations and functionalized activated carbons derived from fluid petroleum coke for environmental applications. Fuel Process. Technol. 106(2), 501 (2013).
3. Kawano, T., Kubota, M., Onyango, M.S., Watanabe, F., and Matsuda, H.: Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Appl. Therm. Eng. 28(8), 865 (2008).
4. Kubota, M., Ito, T., Watanabe, F., and Matsuda, H.: Pore structure and water adsorptivity of petroleum coke-derived activated carbon for adsorption heat pump—Influence of hydrogen content of coke. Appl. Therm. Eng. 31(8), 1495 (2011).
5. Li, X., Zhang, Q., Tang, L., Lu, P., Sun, F., and Li, L.: Catalytic ozonation of p-chlorobenzoic acid by activated carbon and nickel supported activated carbon prepared from petroleum coke. J. Hazard. Mater. 163(1), 115 (2009).
6. Lu, C., Xu, S., and Liu, C.: The role of K2CO3 during the chemical activation of petroleum coke with KOH. J. Anal. Appl. Pyrolysis 87(2), 282 (2010).
7. Peng, C., Wen, Z., Qin, Y., Lukas, S.M., Li, C., Yang, S., Shi, D., and Yang, J.: Three-dimensional graphitized carbon nano vesicles for high-performance supercapacitors based on ionic liquids. ChemSusChem 7(3), 777 (2014).
8. Sánchez-Polo, M. and Rivera-Utrilla, J.: Ozonation of naphthalenetrisulphonic acid in the presence of activated carbons prepared from petroleum coke. Appl. Catal., B 67(1–2), 113 (2006).
9. Xiao, R., Xu, S., Li, Q., and Su, Y.: The effects of hydrogen on KOH activation of petroleum coke. J. Anal. Appl. Pyrolysis 96(12), 120 (2012).
10. Yuan, M., Tong, S., Zhao, S., and Jia, C.Q.: Adsorption of polycyclic aromatic hydrocarbons from water using petroleum coke-derived porous carbon. J. Hazard. Mater. 181(1–3), 1115 (2010).
11. Zhang, H., Jiang, Y., Hu, Y., Maclennan, A., Hui, W., and Wang, C.: Effect of pyrite in precursor on capacitance behavior of prepared activated carbon. Ind. Eng. Chem. Res. 53(24), 10125 (2014).
12. Zhang, P., Liu, X.H., Li, K.X., and Lu, Y.R.: Heteroatom-doped highly porous carbon derived from petroleum coke as efficient cathode catalyst for microbial fuel cells. Int. J. Hydrogen Energy 40(39), 13530 (2015).
13. Qiao, W., Yoon, S.H., and Mochida, I.: KOH activation of needle coke to develop activated carbons for high-performance EDLC. Energy Fuels 20(4), 1680 (2006).
14. Wei, X. and Feng, Y.Z.: Effects of preoxidation on the surface properties of super active carbon. New Carbon Mater. 17(3), 25 (2002).
15. Lu, C., Xu, S., Gan, Y., Liu, S., and Liu, C.: Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon 43(11), 2295 (2005).
16. Jiang, B., Zhang, Y., Zhou, J., Zhang, K., and Chen, S.: Effects of chemical modification of petroleum cokes on the properties of the resulting activated carbon. Fuel 87(10–11), 1844 (2008).
17. Tateishi, D., Esumi, K., and Honda, H.: Formation of carbonaceous gel. Carbon 29(8), 1296 (1991).
18. Tateishi, D., Esumi, K., Honda, H., and Oda, H.: Preparation of carbonaceous gel beads. Carbon 30(6), 942 (1992).
19. Esumi, K., Eshima, S., Murakami, Y., Honda, H., and Oda, H.: Preparation of hollow carbon-microbeads from water-in-oil emulsion using amphiphilic carbonaceous material. Colloids Surf., A 108(1), 113 (1996).
20. Li, Z., Yan, W., and Dai, S.: A novel vesicular carbon synthesized using amphiphilic carbonaceous material and micelle templating approach. Carbon 42(4), 767 (2004).
21. Oda, H., Tateishi, D., Esumi, K., and Honda, H.: The formation of porous carbon materials from carbonaceous gel. Carbon 32(2), 355 (1994).
22. Wang, J., Chen, M., Wang, C., Wang, J., and Zheng, J.: Preparation of mesoporous carbons from amphiphilic carbonaceous material for high-performance electric double-layer capacitors. J. Power Sources 196(1), 550 (2011).
23. Wang, J., Chen, M., Wang, C., Wang, J., and Zheng, J.: A facile method to prepare carbon aerogels from amphiphilic carbon material. Mater. Lett. 68(1), 446 (2012).
24. Yuan, Y., Zhang, C., Wang, C., and Chen, M.: Amphiphilic carbonaceous material-based hierarchical porous carbon aerogels for supercapacitors. J. Solid State Electrochem. 19(2), 619 (2014).
25. Han, S. and Hyeon, T.: Simple silica-particle template synthesis of mesoporous carbons. Chem. Commun. 19(19), 1955 (1999).
26. Li, S., Chungui, T., Yu, F., Ying, Y., Jie, Y., Lei, W., and Honggang, F.: Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem.–Eur. J. 20(2), 564 (2014).
27. Olejniczak, A., Lezanska, M., Wloch, J., Kucinska, A., and Lukaszewicz, J.P.: Novel nitrogen-containing mesoporous carbons prepared from chitosan. J. Mater. Chem. A 1(31), 8961 (2013).
28. Wang, H., Yi, H., Zhu, C., Wang, X., and Fan, H.J.: Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy 13, 658 (2015).
29. Wang, H-L., Shi, Z-Q., Jin, J., Chong, C-B., and Wang, C-Y.: Properties and sodium insertion behavior of phenolic resin-based hard carbon microspheres obtained by a hydrothermal method. J. Electroanal. Chem. 755, 87 (2015).
30. Le, H.A., Le, T.L., Chin, S., and Jurng, J.: Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon. Powder Technol. 225(7), 167 (2012).
31. Jin, L.X., Wei, X., Jin, Z., Qiang, W.G., Ping, Z.S., Feng, Y.Z., Zhong, X.Q., and Zhang, Q.S.: Excellent capacitive performance of a three-dimensional hierarchical porous graphene/carbon composite with a superhigh surface area. Chem.–Eur. J. 20(41), 13314 (2014).
32. Kumar, R., More, V., Mohanty, S.P., Nemala, S.S., Mallick, S., and Bhargava, P.: A simple route to making counter electrode for dye sensitized solar cells (DSSCs) using sucrose as carbon precursor. J. Colloid Interface Sci. 459, 146 (2015).
33. Qiang, R., Hu, Z., Yang, Y., Li, Z., An, N., Ren, X., Hu, H., and Wu, H.: Monodisperse carbon microspheres derived from potato starch for asymmetric supercapacitors. Electrochim. Acta 167, 303 (2015).
34. Li, Z., Lv, W., Zhang, C., Li, B., Kang, F., and Yang, Q-H.: A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant. Carbon 92, 11 (2015).
35. Huanlei, W., Zhanwei, X., Alireza, K., Zhi, L., Kai, C., Xuehai, T., Tyler James, S., King’Ondu, C.K., Holt, C.M.B., and Olsen, B.C.: Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7(6), 5131 (2013).
36. Huang, J., Wang, J., Wang, C., Zhang, H., Lu, C., and Wang, J.: Hierarchical porous graphene carbon-based supercapacitors. Chem. Mater. 27, 2107 (2015).
37. Li, X. and Wei, B.: Supercapacitors based on nanostructured carbon. Nano Energy 2(2), 159 (2012).
38. Béguin, F., Presser, V., Balducci, A., and Frackowiak, E.: Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26(14), 2219 (2014).
39. Xiong, G., Meng, C., Reifenberger, R.G., Irazoqui, P.P., and Fisher, T.S.: A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26(1), 30 (2014).
40. Vangari, M., Pryor, T., and Li, J.: Supercapacitors: Review of materials and fabrication methods. J. Energy Eng. 139(2), 72 (2013).
41. He, S. and Chen, W.: High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites. J. Power Sources 262, 391 (2014).
42. Huang, M.L., Gu, C.D., Ge, X., Wang, X.L., and Tu, J.P.: NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials. J. Power Sources 259, 98 (2014).
43. Sawangphruk, M., Srimuk, P., Chiochan, P., Krittayavathananon, A., Luanwuthi, S., and Limtrakul, J.: High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60, 109 (2013).
44. Niu, Z., Luan, P., Shao, Q., Dong, H., Li, J., Chen, J., Zhao, D., Cai, L., Zhou, W., Chen, X., and Xie, S.: A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ. Sci. 5(9), 8726 (2012).
45. Song, Y., Xu, J-L., and Liu, X-X.: Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J. Power Sources 249, 48 (2014).
46. Xu, Y., Lin, Z., Huang, X., Yang, W., Yu, H., and Duan, X.: Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater. 25(40), 5779 (2013).
47. An, N., Zhang, F., Hu, Z., Li, Z., Li, L., Yang, Y., Guo, B., and Lei, Z.: Non-covalently functionalizing a graphene framework by anthraquinone for high-rate electrochemical energy storage. RSC Adv. 5, 23942 (2015).
48. Chen, X., Wang, H., Yi, H., Wang, X., Yan, X., and Guo, Z.: Anthraquinone on porous carbon nanotubes with improved supercapacitor performance. J. Phys. Chem. C 118(16), 8262 (2014).
49. May, Q., Daniel, S., Wasylkiw, M.F., and Smith, D.K.: Voltammetry of quinones in unbuffered aqueous solution: Reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. J. Am. Chem. Soc. 129(42), 12847 (2007).
50. Wu, X., Xing, W., Florek, J., Zhou, J., Wang, G., Zhuo, S., Xue, Q., Yan, Z., and Kleitz, F.: On the origin of the high capacitance of carbon derived from seaweed with an apparently low surface area. J. Mater. Chem. A 2, 18998 (2014).
51. Wu, X., Zhou, J., Xing, W., Zhang, Y., Bai, P., Xu, B., Zhuo, S., Xue, Q., and Yan, Z.: Insight into high areal capacitances of low apparent surface area carbons derived from nitrogen-rich polymers. Carbon 94, 560 (2015).

Keywords

Type Description Title
WORD
Supplementary materials

Huang supplementary material
Table S1

 Word (19 KB)
19 KB

Functionalization of petroleum coke-based mesoporous carbon for synergistically enhanced capacitive performance

  • Jufeng Huang (a1), Wei Xing (a1), Fazle Subhan (a2), Xiuli Gao (a3), Peng Bai (a3), Zhen Liu (a3), Youhe Wang (a1), Qingzhong Xue (a1) and Zifeng Yan (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed