## REFERENCES

1.Hutchinson, J.W. and Evans, A.G.: Mechanics of materials: Top-down approaches to fracture. Acta Mater. 48, 125 (2000).

2.Needleman, A. and Van der Giessen, E.: Micromechanics of fracture: Connecting physics to engineering. MRS Bull. 26, 211 (2001).

3.Bitzek, E., Kermode, J.R., and Gumbsch, P.: Atomistic aspects of fracture. Int. J. Fract. 191, 13 (2015).

4.Shiari, B. and Miller, R.E.: Multiscale modeling of crack initiation and propagation at the nanoscale. J. Mech. Phys. Solids 88, 35 (2016).

5.Rabczuk, T.: Computational methods for fracture in brittle and quasi-brittle solids: State-of-the-art review and future perspectives. ISRN Appl. Math. 2013, 849231 (2013).

6.Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100 (1960).

7.Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55 (1962).

8.Rice, J.R.: Mathematical analysis in the mechanics of fracture. In Fracture, Vol. 2, Liebowitz, H., ed. (Academic Press, New York, 1968); chap. 3.

9.Singh, G., Kermode, J.R., De Vita, A., and Zimmerman, R.W.: Validity of linear elasticity in the crack-tip region of ideal brittle solids. Int. J. Fract. 189, 103 (2014).

10.Shimada, T., Ouchi, K., Chihara, Y., and Kitamura, T.: Breakdown of continuum fracture mechanics at the nanoscale. Sci. Rep. 5, 8596 (2015).

11.Zhou, F. and Molinari, J.F.: Dynamic crack propagation with cohesive elements: A methodology to address mesh dependency. Int. J. Numer. Methods Eng. 59, 1 (2004).

12.Turon, A., Dávila, C.G., Camanho, P.P., and Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665 (2007).

13.Hillerborg, A., Modéer, M., and Petersson, P-E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773 (1976).

14.Chandra, N., Li, H., Shet, C., and Ghonem, H.: Some issues in the application of cohesive zone models for metal–ceramic interfaces. Int. J. Solids Struct. 39, 2827 (2002).

15.Spearot, D.E., Jacob, K.I., and McDowell, D.L.: Non-local separation constitutive laws for interfaces and their relation to nanoscale simulations. Mech. Mater. 36, 825 (2004).

16.Yamakov, V., Saether, E., Phillips, D.R., and Glaessgen, E.H.: Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum. J. Mech. Phys. Solids 54, 1899 (2006).

17.Coffman, V.R., Sethna, J.P., Heber, G., Liu, M., Ingraffea, A., Bailey, N.P., and Barker, E.I.: A comparison of finite element and atomistic modelling of fracture. Modell. Simul. Mater. Sci. Eng. 16, 65008 (2008).

18.Zhou, X.W., Moody, N.R., Jones, R.E., Zimmerman, J.A., and Reedy, E.D.: Molecular-dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch. Acta Mater. 57, 4671 (2009).

19.Coffman, V.R., Saetna, J.P., Ingraffea, A.R., Bozek, J.E., Bailey, N.P., Barker, E.I., Sethna, J.P., Ingraffea, A.R., Bozek, J.E., Bailey, N.P., and Barker, E.I.: Challenges in continuum modelling of intergranular fracture. Strain 47, 99 (2011).

20.Lloyd, J.T., Zimmerman, J.A., Jones, R.E., Zhou, X.W., and McDowell, D.L.: Finite element analysis of an atomistically derived cohesive model for brittle fracture. Modell. Simul. Mater. Sci. Eng. 19, 65007 (2011).

21.Barrows, W., Dingreville, R., and Spearot, D.: Traction-separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations. Mater. Sci. Eng., A 650, 354 (2016).

22.Kumar, S. and Curtin, W.A.: Crack interaction with microstructure. Mater. Today 10, 34 (2007).

23.Cleveringa, H.H.M., Van der Giessen, E., and Needleman, A.: Discrete dislocation analysis of mode I crack growth. J. Mech. Phys. Solids 48, 1133 (2000).

24.Deshpande, V.S., Needleman, A., and Van der Giessen, E.: Discrete dislocation modeling of fatigue crack propagation. Acta Mater. 50, 831 (2002).

25.Broedling, N.C., Hartmaier, A., and Gao, H.: A combined dislocation—Cohesive zone model for fracture in a confined ductile layer. Int. J. Fract. 140, 169 (2006).

26.Déprés, C., Prasad Reddy, G.V., Robertson, C., and Fivel, M.: An extensive 3D dislocation dynamics investigation of stage-I fatigue crack propagation. Philos. Mag. 94, 4115 (2014).

27.Zhang, P., Klein, P., Huang, Y., Gao, H., and Wu, P.D.: Numerical simulation of cohesive fracture by the virtual-internal-bond model. Comput. Model. Eng. Sci. 3, 263 (2002).

28.Ji, B. and Gao, H.: A study of fracture mechanisms in biological nano-composites via the virtual internal bond model. Mater. Sci. Eng., A 366, 96 (2004).

29.Tahir, A.M., Janisch, R., and Hartmaier, A.: Hydrogen embrittlement of a carbon segregated Σ5 (310) [001] symmetrical tilt grain boundary in α-Fe. Mater. Sci. Eng., A 612, 462 (2014).

30.Ogata, S., Li, J., and Yip, S.: Ideal pure shear strength of aluminum and copper. Science 298, 807 (2002).

31.Černý, M. and Pokluda, J.: The theoretical shear strength of fcc crystals under superimposed triaxial stress. Acta Mater. 58, 3117 (2010).

32.Šob, M., Friák, M., Legut, D., Fiala, J., and Vitek, V.: The role of ab initio electronic structure calculations in studies of the strength of materials. Mater. Sci. Eng., A 387–389, 148 (2004).

33.Ogata, S., Umeno, Y., and Kohyama, M.: First-principles approaches to intrinsic strength and deformation of materials: Perfect crystals, nano-structures, surfaces and interfaces. Modell. Simul. Mater. Sci. Eng. 17, 13001 (2009).

34.Gibson, M.A. and Schuh, C.A.: Segregation-induced changes in grain boundary cohesion and embrittlement in binary alloys. Acta Mater. 95, 145 (2015).

35.Tahir, A.M., Janisch, R., and Hartmaier, A.: Ab initio calculation of traction separation laws for a grain boundary in molybdenum with segregated C impurities. Modell. Simul. Mater. Sci. Eng. 21, 16 (2013).

36.Serebrinsky, S., Carter, E.A., and Ortiz, M.: A quantum-mechanically informed continuum model of hydrogen embrittlement. J. Mech. Phys. Solids 52, 2403 (2004).

37.Nguyen, O. and Ortiz, M.: Coarse-graining and renormalization of atomistic binding relations and universal macroscopic cohesive behavior. J. Mech. Phys. Solids 50, 1727 (2002).

38.Hayes, R.L., Ortiz, M., and Carter, E.A.: Universal binding-energy relation for crystals that accounts for surface relaxation. Phys. Rev. B 69, 1 (2004).

39.Elsner, B.A.M. and Müller, S.: Size effects and strain localization in atomic-scale cleavage modeling. J. Phys.: Condens. Matter 27, 345002 (2015).

40.Enrique, R.A. and Van der Ven, A.: Decohesion models informed by first-principles calculations: The ab initio tensile test. J. Mech. Phys. Solids 107, 494 (2017).

41.Janisch, R., Ahmed, N., and Hartmaier, A.: Ab initio tensile tests of aluminum bulk crystals and grain boundaries: Universality of mechanical behavior. Phys. Rev. B 81, 184108 (2010).

42.Sun, Y.M., Beltz, G.E., and Rice, J.R.: Estimates from atomic models of tension shear coupling in dislocation nucleation from a crack-tip. Mater. Sci. Eng., A 170, 67 (1993).

43.Pang, X.Y., Janisch, R., and Hartmaier, A.: Interplanar potential for tension-shear coupling at grain boundaries derived from ab initio calculations. Modell. Simul. Mater. Sci. Eng. 24, 15007 (2015).

44.Gonze, X., Beuken, J-M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G-M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J-Y., and Allan, D.C.: First-principles computation of material properties: The ABINIT software project. Comput. Mater. Sci. 25, 478 (2002).

45.Gonze, X.: A brief introduction to the ABINIT software package. Z. Kristallogr. 220, 558 (2005).

46.Gonze, X., Amadon, B., Anglade, P.M., Beuken, J.M., Bottin, F., Boulanger, P., Bruneval, F., Caliste, D., Caracas, R., Côté, M., Deutsch, T., Genovese, L., Ghosez, P., Giantomassi, M., Goedecker, S., Hamann, D.R., Hermet, P., Jollet, F., Jomard, G., Leroux, S., Mancini, M., Mazevet, S., Oliveira, M.J.T., Onida, G., Pouillon, Y., Rangel, T., Rignanese, G.M., Sangalli, D., Shaltaf, R., Torrent, M., Verstraete, M.J., Zerah, G., and Zwanziger, J.W.: ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180, 2582 (2009).

47.Hartwigsen, C., Goedecker, S., and Hutter, J.: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641 (1998).

48.Finnis, M.W. and Sinclair, J.E.: A simple empirical N-body potential for transition metals. Philos. Mag. A 50, 45 (1984).

49.Ackland, G.J. and Thetford, R.: An improved *N*-body semi-empirical model for body-centred cubic transition metals. Philos. Mag. A 56, 15 (1987).

50.Wang, J., Zhou, Y.L., Li, M., and Hou, Q.: A modified W interatomic potential based on ab initio calculations. Modell. Simul. Mater. Sci. Eng. 22, 15004 (2014).

51.Stadler, J., Mikulla, R., and Trebin, H-R.: IMD: A software package for molecular dynamics studies on parallel computers. Int. J. Mod. Phys. C 8, 1131 (1997).

53.Beeler, J.R.: Radiation Effects Computer Experiments (North-Holland, Amsterdam, 1983).

54.Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., and Gumbsch, P.: Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

55.Černý, M., Šesták, P., Řehák, P., Všianská, M., and Šob, M.: Ab initio tensile tests of grain boundaries in the fcc crystals of Ni and Co with segregated sp-impurities. Mater. Sci. Eng., A 669, 218 (2016).

56.Perez, R. and Gumbsch, P.: An Ab initio study of the cleavage anisotropy in silicon. Acta Mater. 48, 4517 (2000).

57.Sih, G.C., Paris, P.C., and Irwin, G.R.: On cracks in rectilinearly anisotropic bodies. Int. J. Fract. 1, 189 (1965).

58.Sih, G.C. and Liebowitz, H.: Mathematical theories of brittle fracture. In Fracture, Vol. 2, Liebowitz, H., ed. (Academic Press, New York, 1968); chap. 2.

59.Möller, J.J. and Bitzek, E.: Comparative study of embedded atom potentials for atomistic simulations of fracture in α-iron. Modell. Simul. Mater. Sci. Eng. 22, 045002 (2014).

60.Möller, J.J. and Bitzek, E.: Fracture toughness and bond trapping of grain boundary cracks. Acta Mater. 73, 1 (2014).

61.Gumbsch, P., Riedle, J., Hartmaier, A., and Fischmeister, H.F.: Controlling factors for the brittle-to-ductile transition in tungsten single crystals. Science 282, 1293 (1998).

62.Vitos, L., Ruban, A.V., Skriver, H.L., and Kollar, J.: The surface energy of metals. Surf. Sci. 411, 186 (1998).

63.Piazza, Z.A., Ajmalghan, M., Ferro, Y., and Kolasinski, R.D.: Saturation of tungsten surfaces with hydrogen: A density functional theory study complemented by low energy ion scattering and direct recoil spectroscopy data. Acta Mater. 145, 388 (2018).

64.Möller, J.J., Mrovec, M., Bleskov, I., Neugebauer, J., Hammerschmidt, T., Drautz, R., Elsässer, C., Hickel, T., and Bitzek, E.: On {110} planar faults in strained bcc metals: Origins and implications of a commonly observed artifact of classical potentials. Phys. Rev. Mater. 2, 093606 (2018).

65.Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc., A 221, 163 (1921).

66.Gumbsch, P.: Atomistische Modellierung zweidimensionaler Defekte in Metallen: Risse, Phasengrenzflächen. PhD Dissertation, Universität Stuttgart, Stuttgart, 1991.

67.Thomson, R., Hsieh, C., and Rana, V.: Lattice trapping of fracture cracks. J. Appl. Phys. 42, 3154 (1971).

68.Johnson, R.A.: Alloy models with the embedded-atom method. Phys. Rev. B 39, 12554 (1989).

69.Bažant, Z.P., ed.: Fracture mechanics of concrete structures. In Proc. FraMCoS1-lnt. Conf. On Fracture Mechanics of Concrete Structures (Beaver Run Resort, Breckenridge, Colorado, 1992); pp. 6–23.