Skip to main content Accessibility help

Formation process of calcium vanadate nanorods and their electrochemical sensing properties

  • Lizhai Pei (a1), Yinqiang Pei (a1), Yikang Xie (a1), Chuangang Fan (a1), Diankai Li (a1) and Qianfeng Zhang (a1)...


Calcium vanadate nanorods with Ca10V6O25 phase have been synthesized by a hydrothermal process without any surfactants. Hydrothermal temperature, reaction time and calcium (Ca) raw materials play important roles in the formation and size of the calcium vanadate nanorods. The nucleation and crystal growth combined with crystal splitting process have been proposed to explain the formation and growth of calcium vanadate nanorods. The calcium vanadate nanorods are used as glassy carbon electrode-modified materials to analyze the electrochemical behaviors of tartaric acid. The calcium vanadate nanorod-modified glassy carbon electrode exhibits good performance for the electrochemical detection of tartaric acid with a detection limit of 2.4 μM and linear range of 0.005–2 mM. The analytical performance and straightforward fabrication method make the calcium vanadate nanorods promising for the development of electrochemical sensors for tartaric acid.


Corresponding author

a)Address all correspondence to this author. e-mail:,


Hide All
1.Filho, A.G.S., Ferreira, O.P., Santos, E.J.G., Fiho, J.M., and Alves, O.L.: Raman spectra in vanadate nanotubes revisited. Nano Lett. 4, 2099 (2004).
2.Liu, Y., and Qian, Y.T.: Controlled synthesis of β-Mn2V2O7 microtubes and hollow microspheres. Front. Chem. Chin. 3, 467 (2008).
3.Holtz, R.D., Filho, A.G.S., Brocchi, M., Martins, D., Durán, N., and Alves, O.L.: Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21, 185102 (2010).
4.Yu, J.Q. and Kudo, A.: Hydrothermal synthesis of nanofibrous bismuth vanadate. Chem. Lett. 34, 850 (2005).
5.Singh, S., Kumari, N., Varma, K.B.R., and Krupanidhi, S.B.: Synthesis, structural characterization and formation mechanism of ferroelectric bismuth vanadate nanotubes. J. Nanosci. Nanotechnol. 9, 6549 (2009).
6.Singh, D.P., Polychronopoulou, K., Rebholz, C., and Aouadi, S.M.: Room temperature synthesis and high-temperature frictional study of silver vanadate nanorods. Nanotechnology 21, 325601 (2010).
7.Xu, H.Y., Wang, H., Song, Z.Q., Wang, Y.W., Yan, H., and Yoshimura, M.: Novel chemical method for the synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries. Electrochim. Acta 49, 349 (2004).
8.Zhou, Q., Shao, M.W., Que, R.H., Cheng, L., Zhuo, S.J., Tong, Y.H., and Lee, S.T.: Silver vanadate nanoribbons: A label-free bioindicator in the conversion between human serum transferrin and apotransferrin via surface-enhanced Raman scattering. Appl. Phys. Lett. 98, 139110 (2011).
9.Jouanneau, S., Verbaere, A., and Guyomard, D.: On a new calcium vanadate: Synthesis, structure and Li insertion behavior. J. Solid State Chem. 172, 116 (2003).
10.Tashtoush, N., Qudah, A.M., and El-Desoky, M.M.: Compositional dependence of the electrical conductivity of calcium vanadate glassy semiconductors. J. Phys. Chem. Solids 68, 1926 (2007).
11.Nakajima, T., Isobe, M., Tsuchiya, T., Ueda, Y., and Manabe, T.: Photoluminescence property of vanadates M2V2O7 (M: Ba, Sr and Ca). Opt. Mater. 32, 1618 (2010).
12.Pei, L.Z., Pei, Y.Q., Xie, Y.K., Yuan, C.Z., Li, D.K., and Zhang, Q.F.: Growth of calcium vanadate nanorods. CrystEngComm 14, 4262 (2012).
13.Baudrin, E., Laruelle, S., Denis, S., Touboul, M., and Tarascon, J.M.: Synthesis and electrochemical properties of cobalt vanadates versus lithium. Solid State Ionics 123, 139 (1999).
14.Kim, S.S., Ikuta, H., and Wakihara, M.: Synthesis and characterization of MnV2O6 as a high capacity anode material for a lithium secondary battery. Solid State Ionics 139, 57 (2001).
15.Hara, D., Ikuta, H., Uchimoto, Y., and Wakihara, M.: Electrochemical properties of manganese vanadium molybdenum oxide as the anode for Li secondary batteries. J. Mater. Chem. 12, 2507 (2002).
16.Inagaki, M., Morishita, T., Hirano, M., Gupta, V., and Nakajima, T.: Synthesis of MnV2O6 under autogenous hydrothermal conditions and its anodic performance. Solid State Ionics 156, 275 (2003).
17.Zhang, F.F., Wang, X.L., Ai, S.Y., Sun, Z.D., Wan, Q., Zhu, Z.Q., Xian, Y.Z., Jin, L.T., and Yamamoto, K.: Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta 519, 155 (2004).
18.Sudeep, P.K., Joseph, S.T.S., and Thomas, K.G.: Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 127, 6516 (2005).
19.Wei, M., Liu, Y., Gu, Z.Z., and Liu, Z.D.: Electrochemical detection of catechol on boron-doped diamond electrode modified with Au/TiO2 nanorod composite. J. Chin. Chem. Soc. 58, 516 (2011).
20.Kvaratskhelia, R.K., and Kvaratskhelia, E.R.: Electrochemical behavior of tartaric acid at solid electrodes in aqueous and mixed solutions. Russ. J. Electrochem. 44, 230 (2008).
21.Galkwad, A., Silva, M., and Bendito, D.P.: Sensitive determination of periodate and tartaric acid by stopped-flow chemiluminescence spectrometry. Analyst 119, 1819 (1994).
22.Khue, Q.T., Vu, X.H., Dang, D.V., and Nguyen, D.C.: The influence of hydrothermal temperature on SnO2 nanorod formation. Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 025210 (2010).
23.Ma, T., Guo, M., Zhang, M., Zhang, Y.J., and Wang, X.D.: Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology 18, 035605 (2007).
24.Katsman, A., Yaish, Y., Rabkin, E., and Beregovsky, M.: Surface diffusion-controlled formation of nickel silicides in silicon nanowires. J. Electron. Mater. 29, 365 (2010).
25.Dubrovskii, V.G., Sibirev, N.V., Suris, R.A., Cirlin, G.E., Harmand, J.C., and Ustinov, V.M.: Diffusion-controlled growth of semiconductor nanowires: Vapor pressure versus high vacuum deposition. Surf. Sci. 601, 4395 (2007).
26.Tang, J. and Alivisatos, A.P.: Crystal splitting in the growth of Bi2S3. Nano Lett. 6, 2701 (2006).
27.Dong, Y.P., Pei, L.Z., Chu, X.F., and Zhang, Q.F.: Electrochemical behavior of cysteine at a CuGeO3 nanowires-modified glassy carbon electrode. Electrochim. Acta 7, 5135 (2010).
28.Yan, H.J., Wang, D., Han, M.J., Wan, L.J., and Bai, C.L.: Adsorption and coordination of tartaric acid enantiomers on Cu(111) in aqueous solution. Langmuir 20, 7360 (2004).
29.Fu, Y.Z., Yuan, R., Tang, D.P., Chai, Y.Q., and Xu, L.: Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques. Colloids Surf., B 40, 61 (2005).
30.Cai, Z.Y., Pei, L.Z., Yang, Y., Pei, Y.Q., Fan, C.G., and Fu, D.G.: Electrochemical behavior of tartaric acid at CuGeO3 nanowire modified glassy carbon electrode. J. Solid State Electrochem. 16, 2243 (2012).
31.Zhang, J., Deng, P.H., Feng, Y.L., Kuang, Y.F., and Yang, J.J.: Electrochemical determination of ascorbic acid at γ-MnO2 modified carbon black microelectrodes. Microchim. Acta 147, 279 (2004).
32.Xia, C. and Ning, W.: A novel bioelectrochemical ascorbic acid sensor modified with Cu4(OH)6SO4 nanorods. Analyst 136, 288 (2011).
33.Li, Y. and Zhang, S.H.: Electrochemical behaviors of ascorbic acid and uric acid in ionic liquid. J. Dispersion Sci. Technol. 29, 1421 (2008).
34.Fu, C.G., Song, L.N., and Fang, Y.Z.: Simultaneous determination of sugars and organic acids by coelectroosmotic capillary electrophoresis with amperometric detection at a disk-shaped copper electrode. Anal. Chim. Acta 371, 81 (1998).

Related content

Powered by UNSILO

Formation process of calcium vanadate nanorods and their electrochemical sensing properties

  • Lizhai Pei (a1), Yinqiang Pei (a1), Yikang Xie (a1), Chuangang Fan (a1), Diankai Li (a1) and Qianfeng Zhang (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.