Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T13:53:57.197Z Has data issue: false hasContentIssue false

Formation of silicon carbide and amorphous carbon films by pulse biasing silicon to a high voltage in a methane electron cyclotron resonance microwave plasma

Published online by Cambridge University Press:  31 January 2011

K. Volz
Affiliation:
Universität Augsburg, Institut für Physik, 86135 Augsburg, Germany
W. Ensinger
Affiliation:
Universität Augsburg, Institut für Physik, 86135 Augsburg, Germany
W. Reiber
Affiliation:
Universität Augsburg, Institut für Physik, 86135 Augsburg, Germany
B. Rauschenbach
Affiliation:
Universität Augsburg, Institut für Physik, 86135 Augsburg, Germany
B. Stritzker
Affiliation:
Universität Augsburg, Institut für Physik, 86135 Augsburg, Germany
Get access

Extract

Silicon was pulse biased to −45 kV in a methane plasma generated by microwave excitation in the electron cyclotron resonance (ECR) mode. Hydrocarbon ions were accelerated in the electrical field and implanted into the silicon. Rutherford backscattering (RBS) measurements showed that it is possible to incorporate a concentration of up to 95 at.% C into the Si. Cross-section transmission microscopy (XTEM) showed that the resulting surface layer was amorphous. Annealing at 1250 °C resulted in the formation of 10 to 60 nm thick, crystalline SiC layers.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Conrad, J. R., Radtke, J. L., Dodd, R. A., Worzala, F. J., and Tran, N. C., J. Appl. Phys. 62, 4591 (1987).CrossRefGoogle Scholar
2.Cheung, N. W., Nucl. Instrum. Methods, Phys. Res. B 55, 811 (1991).CrossRefGoogle Scholar
3.Ensinger, W.. Nucl. Instrum. Methods, Phys. Res. B 120, 270 (1996).CrossRefGoogle Scholar
4.Conrad, J., Dodd, R. A., Worzala, F. J., and Qiu, X., Surf. Coat. Technol. 16, 927 (1988).CrossRefGoogle Scholar
5.Ensinger, W., Hartmann, J., Klein, J., Usedom, P., Stritzker, B., and Rauschenbach, B., in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D. B., Ila, D., Cheng, Y-T., Harriott, L. R., and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 396, Pittsburgh, PA, 1996), p. 521.Google Scholar
6.Doolittle, L. R., Nucl. Instrum. Methods B9, 344 (1985).CrossRefGoogle Scholar
7.Leavitt, J. A., McIntyre, L. C. Jr, Stoss, P., Oder, J. G., Ashbaugh, M. D., Dezfouly-Arjomandy, B., Zhang, Z. M., and Lin, Z., Nucl. Instrum. Methods B40/41, 776 (1989).CrossRefGoogle Scholar