Skip to main content Accessibility help
×
Home

Formation, evolution, and degradation of nanostructured covalent thin films deposited by low-energy cluster beam deposition

  • Luisa D'Urso (a1), A. Alessandro Scalisi (a1), Corinna Altamore (a1) and Giuseppe Compagnini (a1)

Abstract

Low-energy cluster beam deposition (LECBD) is considered an intriguing technique for obtaining thin layers with well-defined structures at the nano- and mesoscale levels, allowing novel optical, electronic, and magnetic properties. The produced layers are highly porous and extremely reactive due to the high surface to volume ratio and must be characterized with in situ techniques to study their original composition and their evolution once exposed to reactive gases. In this work, we present a general overview and some results on the formation, evolution, and deposition of silicon and carbon cluster beams produced using a laser vaporization source.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: gcompagnini@unict.it This paper was selected as the Outstanding Meeting Paper for the 2005 MRS Fall Meeting Symposium Q Proceedings, Vol. 887.

References

Hide All
1.Castleman, A.W., Bowen, K.H.: Clusters: Structure, energetics, and dynamics of intermediate states of matter. J. Phys. Chem. 100, 12911 (1996).
2.Eberhard, W.: Clusters as new materials. Surf. Sci. 500, 242 (2002).
3.Pignataro, B., De Bonis, A., Compagnini, G., Sassi, P., Cataliotti, R.S.: The role of micro- and nanomorphology of rough silver surfaces of different nature in surface-enhanced Raman scattering effect: A combined study of scanning force microscopy and low-frequency Raman modes. J. Chem. Phys. 113, 5947 (2000).
4.Hopkins, J.B., Langridge, P.R.R., Morse, M.D., Smalley, R.E.: Supersonic metal cluster beams of refractory metals: Spectral investigations of ultracold Mo2. J. Chem. Phys. 78, 1627 (1983).
5.Rohlfing, R.A., Cox, D.M., Kaldor, A.: Production and characterization of supersonic carbon cluster beams. J. Chem. Phys. 81, 3322 (1984).
6.Bower, J.E., Jarrold, M.F.: Properties of deposited size-selected clusters: Reactivity of deposited silicon clusters. J. Chem. Phys. 97, 8312 (1992).
7.Dupuis, V., Favre, L., Stanescu, S., Tuaillon-Combes, J., Bernstein, E., Perez, A.: Magnetic assembled nanostructured from pure and mixed Co-based clusters. J. Phys.: Condens. Matter 16, S2231 (2004).
8.Siciliano, P., Taurino, A.M., Toccoli, T., Pallaoro, A., Iannotta, S., Milani, P.: Novel inorganic and organic-inorganic hybrid nanostructured thin film for gas microsensors prepared by supersonic cluster beam deposition. Chem. Sensors 20, 368 (2004).
9.Perez, A., Melinon, P., Dupuis, V., Jensen, P., Prevel, B., Tuaillon, J.: Cluster assembled materials: A novel class of nanostructured solids with original structures and properties. J. Phys. D 30, 709 (1997).
10.Wiley, W.C., McLaren, I.H.: Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instr. 26, 1150 (1955).
11.Compagnini, G., D’Urso, L., Puglisi, O.: Mass and velocity distributions of supersonic cluster beams. Mater. Sci. Eng. 2005, in press.
12.Neuendorf, R., Palmer, R.E., Smith, R.: Low energy deposition of size-selected Si clusters onto graphite. Chem. Phys. Lett. 333, 304 (2001).
13.Jones, R.O., Clare, B.W., Jennings, P.J.: Si–H clusters, defects, and hydrogenated silicon. Phys. Rev. B 64, 125203 (2002).
14.Brodsky, M.H., Cardona, M., Cuomo, J.J.: Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Phys. Rev. B 16, 3556 (1977).
15.Gupta, P., Dillon, A.C., Braker, A.S., George, S.M.: FTIR studies of water and deuterium oxide decomposition on porous silicon surfaces. Surf. Sci. 245, 360 (1991).
16.Prokes, S.M., Glembocki, O.J.: Role of interfacial oxide-related defects in the red-light emission in porous silicon. Phys. Rev. B 49, 2238 (1994).
17.Ledoux, G., Guillois, O., Porterat, D., Reynaud, C., Huisken, F., Kohn, B., Paillard, V.: Photoluminescence properties of silicon nanocrystals as a function of their size. Phys. Rev. B62, 15942 (2000).
18.Chipara, M., Zaleski, J.M., Hui, D., Du, C., Pan, N.: Electron spin resonance on carbon nanotubes-polymer composites. J. Polym. Sci., Part B: Polym. Phys. 43, 3406 (2005).
19.Koudoumas, E., Kokkinaki, O., Konstantaki, M., Couris, S., Korovin, S., Detkov, P., Kuznetsov, V., Pimenov, S., Pustovoi, V.: Onion-like carbon and diamond nanoparticles for optical limiting. Chem. Phys. Lett. 357, 336 (2002).
20.Casari, C.S., LiBassi, A., Ravagnan, L., Siviero, F., Lenardi, C., Piseri, P., Bongiorno, G., Bottani, C.E., Milani, P.: Chemical and thermal stability of carbyne-like structures in cluster-assembled carbon films. Phys. Rev. 69, 075422 (2004).
21.Compagnini, G.: Raman spectroscopy for carbon based amorphous thin films, in Materials for Space Applications edited by Chipara, M., Edwards, D.L., Benson, R.S., and Phillips, S. (Mater. Res. Soc. Symp. Proc. 851, Warrendale, PA, 2005), p. 41.
22.Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).
23.Compagnini, G., Battiato, S., Puglisi, O., Baratta, G.A., Strazzulla, G.: Ion irradiation of sp rich amorphous carbon thin films: A vibrational investigation. Carbon 43, 3025 (2005).
24.Bellamy, L.J.: The Infra-red Spectra of Complex Molecules (Chapman and Hall, London, UK, 1975).

Keywords

Related content

Powered by UNSILO

Formation, evolution, and degradation of nanostructured covalent thin films deposited by low-energy cluster beam deposition

  • Luisa D'Urso (a1), A. Alessandro Scalisi (a1), Corinna Altamore (a1) and Giuseppe Compagnini (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.