Skip to main content Accessibility help

Formation and processing of mesoporous barium titanate powders via the micelle template method

  • Hong-Wen Wang (a1), Chien-Hung Kuo (a1), Tsai-Huei Liao (a1), Ren-Jay Lin (a2) and Syh-Yuh Cheng (a2)...


Mesoporous barium titanate powders having a 100- to 300-nm size were prepared by hydration and condensation of titanium tetra-isopropoxide and barium precursors in the presence of an organic surfactant, tetradecylamine, which was used as a self-assembly micelle. The processing and sintering of these mesoporous barium titanate powders has been investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to identify the structural characteristics and morphologies of the powders. Mesoporous wormhole-like powders with surface areas around 53 ∼ 108 m2/g could be obtained after removing the micelle organics by calcination at 400 °C for 3 h. Powders derived using barium hydroxide were found to form a larger pore size and a higher surface area. The addition of acetic acid was also effective in increasing the surface area. A formation mechanism for the mesoporous structure is depicted. Heat treatment caused the mesoporous spheres to shrink, and 155- ∼ 330-nm grain sizes were readily obtained after pressureless sintering at 900 ∼ 1000 °C for 1 h in air.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992).
2.Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834 (1992).
3.Huo, Q., Margolese, D.I., Ciesla, U., Feng, P., Gier, T.E., Sieger, P., Leon, R., Petroff, P.M., Schuth, F., Stucky, G.D.: Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368, 317 (1994).
4.Ciesla, U., Demuth, D., Leon, R., Petroff, P., Stucky, G., Unger, K., Schüth, F.: Surfactant controlled preparation of mesostructured transition-metal oxide compounds. Chem. Commun. 1387 (1994).
5.Ying, J.Y., Mchnert, C.P., Wong, M.S.: Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed. Engl. 38, 56 (1999).
6.Antonelli, D.M., Ying, J.Y.: Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angew. Chem. Int. Ed. Engl. 34, 2014 (1995).
7.Antonelli, D.M., Ying, J.Y.: Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism. Angew. Chem. Int. Ed. Engl. 35, 426 (1996).
8.Antonelli, D.M., Ying, J.Y.: Mesoporous materials. Curr. Opin. Colloid Inter. Sci. 1, 523 (1996).
9.Sun, T., Ying, J.Y.: Synthesis of microporous transition-metal-oxide molecular sieves by a supramolecular templating mechanism. Nature 389, 704 (1997).
10.Pavasupree, S., Suzuki, Y., Pivsa-Art, S., Yoshikawa, S.: Preparation and characterization of mesoporous MO2 (M = Ti, Ce, Zr, and Hf) nanopowders by a modified sol-gel method. Ceram. Int. 31, 959 (2005).
11.Solarska, R., Alexander, B.D., Augustynski, J.: Electrochromic and structural characteristics of mesoporous WO3 films prepared by a sol-gel method. J. Solid State Electrochem. 8, 748 (2004).
12.Antonelli, D.M.: Synthesis of phosphorus-free mesoporous titania via templating with smine surfactants. Microporous Macroporous Mater. 30, 315 (1999).
13.Yoshitake, H., Sugihara, T., Tatsumi, T.: Preparation of worm hole-like mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition. Chem. Mater. 14, 1023 (2002).
14.Wang, Y-D., Ma, C-L., Sun, X-D., Li, H-D.: Neutral templating route to mesoporous structured TiO2. Mater. Lett. 54, 359 (2002).
15.Wada, N., Hiramatsu, T., Ikeda, J., Hamji, Y. Dielectric ceramic, method for producing the same, laminated ceramic electronic element, and method for producing the same. U.S. Patent No. 6,303,529 (2001).
16.Kishi, H., Mizuno, Y., Chazono, H.: Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1 (2003).
17.Yamada, K., Kohiki, S.: Dielectric and optical properties of BaTiO3 mesocrystals. Physica E 4, 228 (1999).
18.Doeuff, S., Henry, M., Sanchez, C., Livage, J.: Hydrolysis of titanium alkoxides: Modification of the molecular precursor by acetic acid. J. Non-Cryst. Solid 89, 206 (1987).
19.Yi, G., Sayer, M.: An acetic acid/water based sol-gel PZT process I: Modification of Zr and Ti alkoxides with acetic acid. J. Sol-Gel Sci. Technol. 6, 65 (1996).
20.Sale, F.R.: Thermal analysis and the processing of electronic and magnetic ceramics. J. Therm. Anal. 42, 793 (1994).
21.Wu, Y., German, R.M., Blaine, D., Marx, B., Schlaefer, C.: Effects of residual carbon content on sintering shrinkage, microstructure and mechanical properties of injection molded 17-4 PH stainless steel. J. Mater. Sci. 37, 3573 (2002).
22.Uchikoba, F., Sato, S., Hirakata, K., Takahashi, T., Kosaka, Y., Sawamura, K.: Binder burnout and sintering process of internal copper electrode-containing multilayer capacitors. Trans. Mater. Res. Soc. Japan 14B, 1707 (1994).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed