Skip to main content Accessibility help
×
Home

Foam fractionation of ZnO crystal growth and its photocatalysis of the degradation of methylene blue

  • Shashi Bairagi Atla (a1), Chien-Yen Chen (a2), Chien-Cheng Chen (a3), Shao-Ju Shih (a4), Pin-Yun Lin (a5), Pei-Hua Chung (a5), Jheng-Sian Yang (a5), Akuri Satyanarayana Reddy (a6), Kai-Chien Cheng (a7) and Young-Fo Chang (a7)...

Abstract

We report herein the crystal growth of ZnO nanoparticles by the foam fractionation method. In this study, the vertical column height of the foam was fixed and the velocity of the sparging air was varied, and the effect of foam flow rate on the synthesis of ZnO was investigated. The obtained ZnO consisted of aggregated platelets and had differing ultraviolet absorbances. The as-synthesized ZnO was hydrophobic because of the interaction between the anionic head groups of sodium dodecyl sulfate (SDS) and the ZnO under the precipitation conditions. The long chain of the SDS molecule was the cause of hydrophobicity. The contact angle of water was in the range of 95–105° for the obtained ZnO/SDS surface. The photocatalytic degradation efficiency of the as-synthesized (ZnO/SDS) and the calcined ZnO was investigated for methylene blue, and the calcined ZnO retained its activity even after three recycles.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: chien-yen.chen@oriel.oxon.org

References

Hide All
1.Gogate, P.R., and Pandit, A.B.: A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Adv. Environ. Res. 8, 501 (2004).
2.Akpan, U.G., and Hameed, B.H.: Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 170, 520 (2009).
3.Sakthivel, S., Neppolian, B., Shankar, M.V., Arabindoo, B., Palanichamy, M., and Murugesan, V.: Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cells 77, 65 (2003).
4.Yu, D., Cai, R., and Liu, Z.: Studies on the photodegradation of Rhodamine dyes on nanometer-sized zinc oxide. Spectrochim. Acta, Part A 60, 1617 (2004).
5.Daneshvar, N., Salari, D., and Khataee, A.R.: Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol., A 162, 317 (2004).
6.Hariharan, C.: Photocatalytic degradation organic contaminants water by ZnO nanoparticles: Revisited. Appl. Catal., A 304, 55 (2006).
7.Agustina, T.E., Ang, H.M., and Vareek, V.K.: A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J. Photochem. Photobiol., C 6, 264 (2005).
8.Kantam, M.L., Kumar, K.B.S., and Sridhar, Ch.: Nanocrystalline ZnO as an efficient heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles. Adv. Synth. Catal. 347, 1212 (2005).
9.Bie, L-J., Yan, X-N., Yin, J., Duan, Y-Q., and Yuan, Z-H.: Nanopillar ZnO gas sensor for hydrogen and ethanol. Sens. Actuators, B 126, 604 (2007).
10.Bdikin, I.K., Gracio, J., Ayouchi, R., Schwarz, R., and Kholkin, A.L.: Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method. Nanotechnology 21, 235703 (2010).
11.Özgür, Ü., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S-J., and Morkoç, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).
12.Wang, C., Shen, E., Wang, E., Gao, L., Kang, Z., Tian, C., Lan, Y., and Zhang, C.: Controllable synthesis of ZnO nanocrystals via a surfactant-assisted alcohol thermal process at a low temperature. Mater. Lett. 59, 2867 (2005).
13.Yu, J., and Yu, X.X.: Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ. Sci. Technol. 42, 4902 (2008).
14.Tseng, T.K., Lin, Y.S., Chen, Y.J., and Chu, H.: A review of photocatalysts prepared by sol-gel method for VOCs removal. Int. J. Mol. Sci. 11, 2336 (2010).
15.Atla, S.B., Chen, C-Y., Yang, J., Chen, C-C., Sun, A-C., Lin, K-H., Maity, J.P., Pan, W., and Cheng, K-C.: Foam fractionation of crystal growth for nanotechnology. Chem. Eng. J. 184, 333 (2012).
16.Sastry, M., Gole, A., Banpurkar, A.G., Limaye, A.V., and Ogale, S.B.: Variation in viscous fingering pattern morphology due to surfactant-mediated interfacial recognition events. Curr. Sci. India. 81, 191 (2001).
17.Choi, K., Lichtenegger, H.C., and Stucky, G.D.: Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid-liquid interfaces. J. Am. Chem. Soc. 124, 12402 (2002).
18.Samaele, N., Amornpitoksuk, P., and Suwanboon, S.: Effect of pH on the morphology and optical properties of modified ZnO particles by SDS via a precipitation method. Powder Technol. 203, 243 (2010).
19.Reddy, A.S., Kuo, Y., Atla, S.B., Chen, C.Y., Chen, C., Shih, R., Chang, Y., Maity, J.P., and Chen, H.: Low-temperature synthesis of rose-like ZnO nanostructures using surfactin and their photocatalytic activity. J. Nanosci. Nanotechnol. 11, 5034 (2011).
20.Michaelis, E., Wöhrle, D., Rathousky, J., and Wark, M.: Electrodeposition of porous zinc oxide electrodes in the presence of sodium laurylsulfate. Thin Solid Films 497, 163 (2006).
21.Pare, B., Jonnalagadda, S.B., Tomar, H., Singh, P., and Bhagwat, V.W.: ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination 232, 80 (2008).
22.Blossey, R.: Self-cleaning surfaces-virtual realities. Nat. Mater. 2, 301 (2003).
23.Badre, C., Pauporté, T., Turmine, M., and Lincot, D.: Tailoring the wetting behavior of zinc oxide films by using alkylsilane self-assembled monolayers. Superlattices Microstruct. 42, 99 (2007).
24.Hou, X., Zhou, F., Yu, B., and Liu, W.: Superhydrophobic zinc oxide surface by differential etching and hydrophobic modification. Mater. Sci. Eng. 452453, 732 (2007).
25.Chen, X., Li, M., Zhu, Y., Zhou, B., Zhao, X., Gao, X., Ma, Y., Wang, L., and Wang, Z.: Surface and interface study of ZnO nanoparticles modified by octadecanol phosphate. Surf. Interface Anal. 42, 123 (2010).
26.Pauporte, T., and Rathousky, J.: Growth mechanism and photocatalytic properties for dye degradation of hydrophobic mesoporous ZnO/SDS films prepared by electrodeposition. Microporous Mesoporous Mater. 117, 380 (2009).

Keywords

Type Description Title
WORD
Supplementary materials

Atla Supplementary Material
Supplementary Material

 Word (2.7 MB)
2.7 MB

Foam fractionation of ZnO crystal growth and its photocatalysis of the degradation of methylene blue

  • Shashi Bairagi Atla (a1), Chien-Yen Chen (a2), Chien-Cheng Chen (a3), Shao-Ju Shih (a4), Pin-Yun Lin (a5), Pei-Hua Chung (a5), Jheng-Sian Yang (a5), Akuri Satyanarayana Reddy (a6), Kai-Chien Cheng (a7) and Young-Fo Chang (a7)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed