Skip to main content Accessibility help

Fluorographene: Synthesis and sensing applications

  • Tharangattu N. Narayanan (a1), Ravi K. Biroju (a1) and Venkatesan Renugopalakrishnan (a2)
  • Please note a correction has been issued for this article.


This article features the recent developments in fluorographene (FG) and its other functional forms such as fluorographene oxide—their synthesis, fluorination, defluorination, and applications. FG is identified as an important functional derivative of graphene, and FG’s multifunctionalities make it as an ideal candidate for diverse fields, say from photovoltaic to bio-medical diagnosis, imaging, sensing, and therapy. Here the possibilities of FG as a biomedical sensing platform is discussed in detail and the potentials of FG based electrochemical and conductometric sensing platforms are unraveled. The importance of fluorine control as well as the other key factors need to be considered while choosing FG based bio-sensing platforms are also discussed.


Corresponding author

a) Address all correspondence to this author. e-mail:,


Hide All

Contributing Editor: Gary L. Messing


This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to

A previous error in this article has been corrected, see 10.1557/jmr.2017.245.



Hide All
1. Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., and Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652 (2007).
2. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., and Dai, H.: Nanotube molecular wires as chemical sensors. Science 287(5453), 622 (2000).
3. Collins, P.G., Bradley, K., Ishigami, M., and Zettl, A.: Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459), 1801 (2000).
4. Novesolov, K.: The rise of graphene. Nature 6, 1849 (2007).
5. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10451 (2005).
6. Zhang, Y., Tan, Y-W., Stormer, H.L., and Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201 (2005).
7. Tadi, K.K., Pal, S., and Narayanan, T.N.: Fluorographene based ultrasensitive ammonia sensor. Sci. Rep. 6, 25221 (2016).
8. Krishna, M.B.M., Man, M.K.L., Vinod, S., Chin, C., Harada, T., Taha-Tijerina, J., Tiwary, C.S., Nguyen, P., Chang, P., Narayanan, T.N., Rubio, A., Ajayan, P.M., Talapatra, S., and Dani, K.M.: Engineering photophenomena in large, 3D structures composed of self-assembled van der Waals heterostructure flakes. Adv. Opt. Mater. 3(11), 1551 (2015).
9. Song, L., Liu, Z., Reddy, A.L.M., Narayanan, N.T., Taha-Tijerina, J., Peng, J., Gao, G., Lou, J., Vajtai, R., and Ajayan, P.M.: Binary and ternary atomic layers built from carbon, boron, and nitrogen. Adv. Mater. 24(36), 4878 (2012).
10. Chen, Y., Zhang, B., Liu, G., Zhuang, X., and Kang, E-T.: Graphene and its derivatives: Switching ON and OFF. Chem. Soc. Rev. 41(13), 4688 (2012).
11. Nguyen, K.T. and Zhao, Y.: Graphene and graphene derivatives in biosensing, imaging, therapeutics, and genetic engineering. Reviews in Cell Biology and Molecular Medicine 1, 386420 (2015).
12. Galande, C., Gao, W., Mathkar, A., Dattelbaum, A.M., Narayanan, T.N., Mohite, A.D., and Ajayan, P.M.: Science and engineering of graphene oxide. Part. Part. Syst. Charact. 31(6), 619 (2014).
13. Sudeep, P.M., Vinayasree, S., Mohanan, P., Ajayan, P.M., Narayanan, T.N., and Anantharaman, M.R.: Fluorinated graphene oxide for enhanced S and X-band microwave absorption. Appl. Phys. Lett. 106(22), 221603 (2015).
14. Bharathidasan, T., Narayanan, T.N., Sathyanaryanan, S., and Sreejakumari, S.S.: Above 170° water contact angle and oleophobicity of fluorinated graphene oxide based transparent polymeric films. Carbon 84, 207 (2015).
15. Romero-Aburto, R., Narayanan, T.N., Nagaoka, Y., Hasumura, T., Mitcham, T.M., Fukuda, T., Cox, P.J., Bouchard, R.R., Maekawa, T., Kumar, D.S., Torti, S.V., Mani, S.A., and Ajayan, P.M.: Fluorinated graphene oxide; A new multimodal material for biological applications. Adv. Mater. 25(39), 5632 (2013).
16. Tang, S. and Cao, Z.: Adsorption and dissociation of ammonia on graphene oxides: A first-principles study. J. Phys. Chem. C 116(15), 8778 (2012).
17. Feng, W., Long, P., Feng, Y., and Li, Y.: Two-dimensional fluorinated graphene: Synthesis, structures, properties and applications. Adv. Sci. 3(7), 1500413 (2016).
18. Jaison, M.J., Narayanan, T.N., Prem Kumar, T., and Pillai, V.K.: A single-step room-temperature electrochemical synthesis of nitrogen-doped graphene nanoribbons from carbon nanotubes. J. Mater. Chem. A 3(35), 18222 (2015).
19. Yang, Z., Sun, Y., Alemany, L.B., Narayanan, T.N., and Billups, W.E.: Birch reduction of graphite. Edge and interior functionalization by hydrogen. J. Am. Chem. Soc. 134(45), 18689 (2012).
20. Poh, H.L., Šimek, P., Sofer, Z., and Pumera, M.: Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere. Chem. –Eur. J. 19(8), 2655 (2013).
21. Mathkar, A., Narayanan, T.N., Alemany, L.B., Cox, P., Nguyen, P., Gao, G., Chang, P., Romero-Aburto, R., Mani, S.A., and Ajayan, P.M.: Synthesis of fluorinated graphene oxide and its amphiphobic properties. Part. Part. Syst. Charact. 30(3), 266 (2013).
22. Radhakrishnan, S., Samanta, A., Sudeep, P.M., Maldonado, K.L., Mani, S.A., Acharya, G., Tiwary, C.S., Singh, A.K., and Ajayan, P.M.: Metal-free dual modal contrast agents based on fluorographene quantum dots. Part. Part. Syst. Charact. 34(1), 1600221 (2016).
23. Mazanek, V., Jankovsky, O., Luxa, J., Sedmidubsky, D., Janousek, Z., Sembera, F., Mikulics, M., and Sofer, Z.: Tuning of fluorine content in graphene: Towards large-scale production of stoichiometric fluorographene. Nanoscale 7(32), 13646 (2015).
24. Boopathi, S., Narayanan, T.N., and Senthil Kumar, S.: Improved heterogeneous electron transfer kinetics of fluorinated graphene derivatives. Nanoscale 6(17), 10140 (2014).
25. Pan, H., Zhu, S., and Mao, L.: Graphene nanoarchitectonics: Approaching the excellent properties of graphene from microscale to macroscale. J. Inorg. Organomet. Polym. Mater. 25(2), 179 (2015).
26. Chang, H., Cheng, J., Liu, X., Gao, J., Li, M., Li, J., Tao, X., Ding, F., and Zheng, Z.: Facile synthesis of wide-bandgap fluorinated graphene semiconductors. Chem. –Eur. J. 17(32), 8896 (2011).
27. Yao, Z., Nie, H., Yang, Z., Zhou, X., Liu, Z., and Huang, S.: Catalyst-free synthesis of iodine-doped graphene via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chem. Commun. 48(7), 1027 (2012).
28. Li, B., Zhou, L., Wu, D., Peng, H., Yan, K., Zhou, Y., and Liu, Z.: Photochemical chlorination of graphene. ACS Nano 5(7), 5957 (2011).
29. Mitkin, V.N.: Types of inorganic fluorocarbon polymer materials and structure–property correlation problems. J. Struct. Chem. 44(1), 82 (2003).
30. Kniaz, K., Fischer, J.E., Selig, H., Vaughan, G.B.M., Romanow, W.J., Cox, D.M., Chowdhury, S.K., McCauley, J.P., Strongin, R.M., and Smith, A.B.: Fluorinated fullerenes: Synthesis, structure, and properties. J. Am. Chem. Soc. 115(14), 6060 (1993).
31. Mickelson, E.T., Chiang, I.W., Zimmerman, J.L., Boul, P.J., Lozano, J., Liu, J., Smalley, R.E., Hauge, R.H., and Margrave, J.L.: Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J. Phys. Chem. B 103(21), 4318 (1999).
32. Robinson, J.T., Burgess, J.S., Junkermeier, C.E., Badescu, S.C., Reinecke, T.L., Perkins, F.K., Zalalutdniov, M.K., Baldwin, J.W., Culbertson, J.C., Sheehan, P.E., and Snow, E.S.: Properties of fluorinated graphene films. Nano Lett. 10(8), 3001 (2010).
33. Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S., Katsnelson, M.I., Cheng, H-M., Strupinski, W., Bulusheva, L.G., Okotrub, A.V., Grigorieva, I.V., Grigorenko, A.N., Novoselov, K.S., and Geim, A.K.: Fluorographene: A two-dimensional counterpart of teflon. Small 6(24), 2877 (2010).
34. Dalvi, V.H. and Rossky, P.J.: Molecular origins of fluorocarbon hydrophobicity. Proc. Natl. Acad. Sci. 107(31), 13603 (2010).
35. Hu, Y.H.: The first magnetic-nanoparticle-free carbon-based contrast agent of magnetic-resonance imaging-fluorinated graphene oxide. Small 10(8), 1451 (2014).
36. Vineesh, T.V., Nazrulla, M.A., Krishnamoorthy, S., Narayanan, T.N., and Alwarappan, S.: Synergistic effects of dopants on the spin density of catalytic active centres of N-doped fluorinated graphene for oxygen reduction reaction. Appl. Mater. Today 1(2), 74 (2015).
37. Philipp, S., Daniel, N., Thomas, M., Julio, T.B., Esteban, M., Shannon, X.W., Stephan, Q., Matthias, F.B., Volckmar, N., Christian, F.R., Michael, C., Markus, H., and Rainer, B.: A quantum information processor with trapped ions. New J. Phys. 15(12), 123012 (2013).
38. Withers, F., Bointon, T.H., Dubois, M., Russo, S., and Craciun, M.F.: Nanopatterning of fluorinated graphene by electron beam irradiation. Nano Lett. 11(9), 3912 (2011).
39. Wang, Z., Wang, J., Li, Z., Gong, P., Liu, X., Zhang, L., Ren, J., Wang, H., and Yang, S.: Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon 50(15), 5403 (2012).
40. Tadi, K.K., Bikkarolla, S.K., Bhorkar, K., Pal, S., Kunchur, N., Indulekh, N., Radhakrishnan, S., Biroju, R.K., and Narayanan, T.N.: Defluorination of fluorographene oxide via solvent interactions. Part. Part. Syst. Charact. (2017). doi: 10.1002/ppsc.201600346.
41. Wang, X., Wang, W., Liu, Y., Ren, M., Xiao, H., and Liu, X.: Controllable defluorination of fluorinated graphene and weakening of C–F bonding under the action of nucleophilic dipolar solvent. Phys. Chem. Chem. Phys. 18(4), 3285 (2016).
42. Urbanova, V., Karlicky, F., Matej, A., Sembera, F., Janousek, Z., Perman, J.A., Ranc, V., Cepe, K., Michl, J., Otyepka, M., and Zboril, R.: Fluorinated graphenes as advanced biosensors—Effect of fluorine coverage on electron transfer properties and adsorption of biomolecules. Nanoscale 8(24), 12134 (2016).
43. Valappil, M.O., Alwarappan, S., and Narayanan, T.N.: Atomic layers in electrochemical biosensing applications—Graphene and beyond. Curr. Org. Chem. 19(12), 1163 (2015).
44. Viswanathan, S., Narayanan, T.N., Aran, K., Fink, K.D., Paredes, J., Ajayan, P.M., Filipek, S., Miszta, P., Tekin, H.C., Inci, F., Demirci, U., Li, P., Bolotin, K.I., Liepmann, D., and Renugopalakrishanan, V.: Graphene–protein field effect biosensors: Glucose sensing. Mater. Today 18(9), 513 (2015).
45. Tadi, K.K., Narayanan, T.N., Arepalli, S., Banerjee, K., Viswanathan, S., Liepmann, D., Ajayan, P.M., and Renugopalakrishnan, V.: Engineered 2D nanomaterials–protein interfaces for efficient sensors. J. Mater. Res. 30(23), 3565 (2015).


Fluorographene: Synthesis and sensing applications

  • Tharangattu N. Narayanan (a1), Ravi K. Biroju (a1) and Venkatesan Renugopalakrishnan (a2)
  • Please note a correction has been issued for this article.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: