Skip to main content Accessibility help

Flow behavior and processing map of forging commercial purity titanium powder compact

  • Xiaoyan Xu (a1), Yuanfei Han (a1), Changfu Li (a2), Philip Nash (a2), Damien Mangabhai (a3) and Weijie Lu (a4)...


The flow behavior of forged commercial purity (CP) titanium powder compact was studied by developing a processing map. CP titanium powder was sintered to 94% relative density, then hot compressed in a Gleeble thermal–mechanical simulator at strain rates ranging from 0.001 to 10 s−1 and deformation temperatures ranging from 600 to 800 °C. The hot forging process improved the densification to 98–99.9% and reduced the grain size from 93 to 10 µm by the occurrence of dynamic recrystallization. The fully dynamic recrystallization region is in the range of deformation temperature of 750–800 °C and strain rate of 0.001–0.01 s−1, with a power dissipation efficiency higher than 40%, determined by constructing a processing map and analyzing the volume fraction of dynamic recrystallization. This research provides a guide for powder compact forging of power metallurgy titanium by providing the hot compression parameters, which can lead to an improved microstructure and densification.


Corresponding author

a) Address all correspondence to this author. e-mail:,


Hide All
1. Lütjering, G. and Williams, J.C.: Titanium (Springer, Berlin, 2007).
2. German, R.M.: Sintering Theory and Practice (Wiley, NewYork, USA, 1996).
3. Xu, X., Nash, G.L., and Nash, P.: Sintering mechanisms of blended Ti-6Al-4V powder from diffusion path analysis. J. Mater. Sci. 49, 9941008 (2014).
4. Zhang, Z.: Simulation of titanium and titanium alloy powder compact forging. Thesis, University of Waikato, Hamilton, New Zealand, 2011.
5. German, R.M.: Powder Metallurgy Science (Metal Powder Industries Federation, Princeton, 1994).
6. Mythili, R., Saroja, S., and Vijayalakshmi, M.: Study of mechanical behavior and deformation mechanism in an α–β Ti–4.4Ta–1.9Nb alloy. Mater. Sci. Eng., A 454455, 4351 (2007).
7. Prasad, Y.V.R.K., Gegel, H.L., Doraivelu, S.M., Malas, J.C., Morgan, J.T., Lark, K.A., and Barker, D.R.: Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Trans. A 15, 18831892 (1984).
8. Prasad, Y.V.R.K. and Seshacharyulu, T.: Processing maps for hot working of titanium alloys. Mater. Sci. Eng., A 243, 8288 (1998).
9. Han, Y., Zeng, W., Qi, Y., and Zhao, Y.: Optimization of forging process parameters of Ti600 alloy by using processing map. Mater. Sci. Eng., A 529, 393400 (2011).
10. Zeng, Z., Zhang, Y., and Jonsson, S.: Deformation behaviour of commercially pure titanium during simple hot compression. Mater. Des. 30, 31053111 (2009).
11. Peng, W., Zeng, W., Wang, Q., and Yu, H.: Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Mater. Des. 51, 95104 (2013).
12. Fan, X.G., Yang, H., and Gao, P.F.: Prediction of constitutive behavior and microstructure evolution in hot deformation of TA15 titanium alloy. Mater. Des. 51, 3442 (2013).
13. Momeni, A. and Abbasi, S.M.: Effect of hot working on flow behavior of Ti-6Al-4V alloy in single phase and two phase regions. Mater. Des. 31, 35993604 (2010).
14. Zhang, X.Y., Li, M.Q., Li, H., Luo, J., Su, S.B., and Wang, H.: Deformation behavior in isothermal compression of the TC11 titanium alloy. Mater. Des. 31, 28512857 (2010).
15. Jia, J., Zhang, K., and Lu, Z.: Dynamic recrystallization kinetics of a powder metallurgy Ti-22Al-25Nb alloy during hot compression. Mater. Sci. Eng., A 607, 630639 (2014).
16. Metal Powder Industries Federation: Standard Test Methods for Metal Powders and Powder Metallurgy Products (Metal Powder Industries Federation, Princeton, 1985).
17. Svoboda, J. and Riedel, H.: Pore-boundary interactions and evolution equations for the porosity and the grain size during sintering. Acta Metall. Mater. 40(11), 28292840 (1992).
18. Kang, S.L.: Sintering: Densification, Grain Growth & Microstructure (Elsevier Butterworth-Heinemann, Burlington, UK, 2005).
19. Xu, X. and Nash, P.: Sintering mechanisms of Armstrong prealloyed Ti-6Al-4V powders. Mater. Sci. Eng., A 607, 409416 (2014).
20. Sellars, C.M. and McTegart, W.J.: On the mechanism of hot deformation. Acta Metall. 14, 11361138 (1966).
21. Zener, C. and Hollomon, J.H.: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 2232 (1944).
22. Zeng, Z., Jonsson, S., and Zhang, Y.: Constitutive equations for pure titanium at elevated temperatures. Mater. Sci. Eng., A 505, 116119 (2009).
23. Frost, H.J. and Ashby, M.F.: Deformation Mechanism Maps (Pergamon Press, Oxford, 1982).
24. Tanaka, H., Yamada, T., Sato, E., and Jimbo, I.: Distinguishing the ambient-temperature creep region in a deformation mechanism map of annealed CP-Ti. Scr. Mater. 54, 121124 (2006).
25. Wanjara, P., Jahazi, M., Monajati, H., Yue, S., and Immarigeon, J-P.: Hot working behavior of near-α alloy IMI834. Mater. Sci. Eng., A 396, 5060 (2005).
26. Sheppard, T. and Norley, J.: Deformation characteristics of Ti-6Al-4V. Mater. Sci. Technol. 4, 903908 (1988).
27. Williams, J.C., Sommer, A.W., and Tung, P.P.: The influence of oxygen concentration on the internal stress and dislocation arrangements in α titanium. Metall. Trans. 3, 29792984 (1972).
28. Weiss, I. and Semiatin, S.L.: Thermomechanical processing of alpha titanium alloys—An overview. Mater. Sci. Eng., A 263, 243256 (1999).
29. Kornilov, I.I.: Effect of oxygen on titanium and its alloys. Met. Sci. Heat Treat. 15, 826829 (1973).
30. Wasz, M.L., Brotzen, F.R., McLellan, R.B., and Griffin, A.J.: Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium. Int. Mater. Rev. 41(1), 112 (1996).
31. Narayana Murty, S.V.S., Nageswara Rao, B., and Kashyap, B.P.: Clarification on the physical dimension of K in a constitutive equation for superplastic flow: Σ = Kεm . J. Mater. Process. Technol. 124, 259 (2002).
32. Zeigler, H.: Some extremum principles in irreversible thermodynamics with application to continuum mechanics. In Progress in Solid Mechanics, Vol. 4, Sneedon, I.N. and Hill, R. eds. (Wiley, New York, 1963); p. 63.
33. Prasad, Y.V.R.K. and Sasidhara, S.: Hot Working Guide: A Compendium of Processing Maps (ASM International, Materials Park, OH, 1997); pp. 25157.
34. Furuhara, T., Poorganji, B., Abe, H., and Maki, T.: Dynamic recovery and recrystallization in titanium alloys by hot deformation. JOM 59(1), 6467 (2007).
35. Chun, Y.B. and Hwang, S.K.: Static recrystallization of warm-rolled pure Ti influenced by microstructural inhomogeneity. Acta Metall. 56(3), 369379 (2008).
36. Narayana Murty, S.V.S., Torizuka, S., and Nagai, K.: Microstructural evolution during simple heavy warm compression of a low carbon steel: Development of a processing map. Mater. Sci. Eng., A, 410411, 319323 (2005).
37. Poletti, C., Degischer, H.P., Kremmer, S., and Marketz, W.: Processing maps of Ti662 unreinforced and reinforced with TiC particles according to dynamic models. Mater. Sci. Eng., A 486, 127137 (1998).
38. Sherby, O.D., Caiigiuri, R.D., Kayali, E.S., and White, R.A.: Fundamentals of superplasticity and its applications. In Advances in Metal Processing, Burke, J.J., Mehrabian, R., and Weiss, V. eds.; Plenum Press: New York, 1981; pp. 133170.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed