Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-30T15:34:37.817Z Has data issue: false hasContentIssue false

Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation, and integration

Published online by Cambridge University Press:  01 December 2005

G. Dennler*
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry,Johannes Kepler University, A-4040 Linz, Austria
C. Lungenschmied
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry,Johannes Kepler University, A-4040 Linz, Austria
H. Neugebauer
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry,Johannes Kepler University, A-4040 Linz, Austria
N.S. Sariciftci
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry,Johannes Kepler University, A-4040 Linz, Austria
A. Labouret
Affiliation:
Solems, 91124 Palaiseau Cédex, France
*
a) Address all correspondence to this author. e-mail: gilles.dennler@jku.at
Get access

Abstract

Organic solar cells based on conjugated polymer:fullerene blends show nowadays efficiencies above 4%. After briefly presenting the science of bulk-heterojunction solar cells, we report herein a shelf lifetime study performed by encapsulating the cells in a flexible and transparent gas barrier material. This method allows lifetimes as reported for glass encapsulation. Moreover, we propose a new approach to pattern organic solar cells and design large-scale modules. This technique, based on selective Nd:yttrium aluminum garnet (YAG) laser etching, potentially enables low-cost, high-speed roll-to-roll operation.

Type
Articles—Energy and The Environment Special Section
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jäger-Waldau, A.: PV Status Report 2003 (Institute for Environment and Sustainability, European Commission, Ispra, Italy, 2003).Google Scholar
2.Tang, C.W.: Two layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183 (1986).CrossRefGoogle Scholar
3.Peumans, P., Yakimov, A. and Forrest, S.R.: Small molecular weight organic thin-film phtodetectors and solar cells. J. Appl. Phys. 93, 3693 (2003).CrossRefGoogle Scholar
4.Yu, G., Gao, J., Hummelen, J.C., Wudl, F. and Heeger, A.J.: Polymer photovoltaic cells: Enhanced efficiencies via network of internal donor-acceptor heterojuntions. Science 270, 1789 (1995).CrossRefGoogle Scholar
5.Brabec, C.J., Sariciftci, N.S. and Hummelen, J.K.: Plastic solar cells. Adv. Funct. Mater. 11, 15 (2001).3.0.CO;2-A>CrossRefGoogle Scholar
6.Hoppe, H. and Sariciftci, N.S.: Organic solar cells: An overview. J. Mater. Res. 19, 1924 (2004).CrossRefGoogle Scholar
7.O’Reagan, D. and Grätzel, M.: A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
8.Greenham, N.C., Peng, X. and Alivisatos, A.P.: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54, 17628 (1996).CrossRefGoogle ScholarPubMed
9.Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004).CrossRefGoogle ScholarPubMed
10.Wudl, F., Allemand, P-M., Srdanov, G., Ni, Z. and McBranch, D.: Polymers and an unusual molecular crystal with nonlinear optical properties, in Materials for Nonlinear Optics: Chemical Perspectives, Vol. 455, edited by Marder, S.R., Sohn, J.E., and Stucky, G.D. (Am. Chem. Soc., Washington, DC, 1991), p. 683.CrossRefGoogle Scholar
11.Shaheen, S.E., Radspinner, R., Peyghambarian, N. and Jabbour, G.E.: Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 79, 2996 (2001).CrossRefGoogle Scholar
12.Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E.P.: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123 (2000).CrossRefGoogle ScholarPubMed
13.Brabec, C.J.: Organic photovoltaics: Technology and market. Sol. Energy Mater. Sol. Cells 83, 273 (2004).CrossRefGoogle Scholar
14. “Konarka to Acquire Solar Technology,” New York Times, September 7, 2004.Google Scholar
15. “Konarka to Acquire Siemens’ Organic Photovoltaic Research Activities,” Konarka press release, September 7, 2004.Google Scholar
16.Bässler, H.: Excitons in conjugated polymers, in Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model, edited by Sariciftci, N.S. (World Scientific, Singapore, 1997), p. 51.Google Scholar
17.Heeger, A.J.: Nature of the primary photo-excitations in poly(arylene-vinylenes): Bound neutral excitons or charged polarons pairs, in Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model, edited by Sariciftci, N.S. (World Scientific, Singapore, 1997), p. 20.Google Scholar
18.Gregg, B.A.: Excitonic solar cells. J. Phys. Chem. B 107, 4688 (2003).CrossRefGoogle Scholar
19.Onsager, L.: Initial recombination of ions. Phys. Rev. 54, 554 (1938).CrossRefGoogle Scholar
20.Haugeneder, A., Neges, M., Kallinger, C., Spirkl, W., Lemmer, U., Feldmann, J., Scherf, U., Harth, E., Gügel, A. and Müllen, K.: Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Phys. Rev. B 59, 15346 (1999).CrossRefGoogle Scholar
21.Sariciftci, N.S., Smilowitz, L., Heeger, A.J. and Wudl, F.: Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474 (1992).CrossRefGoogle ScholarPubMed
22.Morita, S., Zakhidov, A.A. and Yoshino, K.: Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescence. Solid State Commun. 82, 249 (1992).CrossRefGoogle Scholar
23.Brabec, C.J., Zerza, G., Cerullo, G., De Silvestri, S., Luzzati, S., Hummelen, J.C. and Sariciftci, N.S.: Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem. Phys. Lett. 340, 232 (2001).CrossRefGoogle Scholar
24.Smilowitz, L., Sariciftci, N.S., Wu, R., Gettinger, C., Heeger, A.J. and Wudl, F.: Photoexcitation spectroscopy of conducting-polymer-C60 composites: Photoinduced electron transfer. Phys. Rev. B 47, 13835 (1993).CrossRefGoogle ScholarPubMed
25.Arkhipov, V.I., Heremans, P. and Bässler, H.: Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor? Appl. Phys. Lett. 82, 4605 (2003).CrossRefGoogle Scholar
26.Halls, J.J.M., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C. and Holmes, A.B.: Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498 (1995).CrossRefGoogle Scholar
27.Theander, M., Yartsev, A., Zigmantas, D., Sundström, V., Mammo, W., Andersson, M.R. and Inganäs, O.: Photoluminescence quenching at a polythiophene/C60 heterojunction. Phys. Rev. B 60, 12957 (2000).CrossRefGoogle Scholar
28.Yu, G., Gao, J., Hummelen, J.C., Wudl, F. and Heeger, A.J.: Polymer photovoltaic cells: Enhanced efficiencies via network of internal donor-acceptor heterojunctions. Science 270, 1789 (1995).CrossRefGoogle Scholar
29.Schilinsky, P., Waldauf, C., Hauch, J. and Brabec, C.J.: Simulation of light intensity dependent current characteristics of polymer. J. Appl. Phys. 95, 2816 (2004).CrossRefGoogle Scholar
30.Würfel, P.: Physics of Solar Cells (Wiley VCH, Weinheim, Germany, 2004).Google Scholar
31.Brabec, C.J., Cravino, A., Meissner, D., Sariciftci, N.S., Rispens, M.T., Sanchez, L., Hummelen, J.C. and Fromherz, T.: The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films 403–404, 368 (2002).CrossRefGoogle Scholar
32.Kim, H., Jin, S-H., Suh, H. and Lee, K.: Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells. Proc. SPIE 5215, 111 (2004).CrossRefGoogle Scholar
33.Frohne, H., Shaheen, S.E., Brabec, C.J., Mueller, D., Sariciftci, N.S. and Meerholz, K.: Influence of the anodic work function on the performance of organic solar cells. Chem. Phys. Chem. 9, 795 (2002).3.0.CO;2-A>CrossRefGoogle Scholar
34.Brabec, C.J., Cravino, A., Meissner, D., Sariciftci, N.S., Fromherz, T., Rispens, M.T., Sanchez, L. and Hummelen, J.C.: Origin of the open circuit voltage of plastic solar cells. Adv. Funct. Mater. 11, 374 (2001).3.0.CO;2-W>CrossRefGoogle Scholar
35.Brillson, L.J.: The structure and properties of metal-semiconductor interfaces. Surf. Sci. Rep. 2, 123 (1982).CrossRefGoogle Scholar
36.Veenstra, S.C., Heeres, A., Hadziioannou, G., Sawatzky, G.A. and Jonkman, H.T.: On interface dipole layers between C60 and Ag or Au. Appl. Phys. A: Mater. Sci. Proc. 75, 661 (2002).CrossRefGoogle Scholar
37.Winder, C. and Sariciftci, N.S.: Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. Chem. 14, 1077 (2004).CrossRefGoogle Scholar
38.Shaheen, S.E., Brabec, C.J., Sariciftci, N.S., Padinger, F., Fromherz, T. and Hummelen, J.C.: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841 (2001).CrossRefGoogle Scholar
39.Yang, X., van Duren, J.K.J., Janssen, R.A.J., Michels, M.A.J. and Loos, J.: Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerence plastic photovoltaic devices. Macromolecules 37, 2151 (2004).CrossRefGoogle Scholar
40.Hoppe, H., Niggemann, M., Winder, C., Kraut, J., Hiesgen, R., Hinsch, A., Meissner, D. and Sariciftci, N.S.: Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv. Funct. Mater. 14, 1005 (2004).CrossRefGoogle Scholar
41.van Duren, J.K.J., Yang, X., Loos, J., Bulle-Lieuwma, C.W.T., Sieval, A.B., Hummelen, J.C. and Janssen, R.A.J.: Relating the morphology of poly(p-phenylenvinylene)/methanofullerene blends to solar cell performance. Adv. Funct. Mater. 14, 425 (2004).CrossRefGoogle Scholar
42.Blom, P.W.M., de Jong, M.J.M. and Van Munster, M.G.: Electric-filed and temperature dependence of the hole mobility in poly( p -phenylenevinylene). Phys. Rev. B 55, 656 (1997).CrossRefGoogle Scholar
43.Mozer, A. and Sariciftci, N.S.: Negative electric field dependance of charge carrier drift mobility in conjugated, semiconducting polymers. Chem. Phys. Lett. 389, 438 (2004).CrossRefGoogle Scholar
44.Mozer, A., Denk, P., Scharber, M., Neugebauer, H., Sariciftci, N.S., Wagner, P., Lutsen, L. and Vanderzande, D.: Novel regiospecific MDMO-PPV copolymer with improved charge transport for bulk heterojunction solar cells. J. Phys. Chem. B 108, 5235 (2004).CrossRefGoogle Scholar
45.Mihailetchi, V.D., van Duren, J.K.J., Blom, P.W.M., Hummelen, J.C., Janssen, R.A.J., Kroom, J.M., Rispens, M.T., Verhees, W.J.H. and Wienk, M.M.: Electron transport in a methanofullerene. Adv. Funct. Mater. 13, 43 (2003).CrossRefGoogle Scholar
46.Mozer, A.J., Sariciftci, N.S., Lutsen, L., Vanderzande, D., Österbacka, R., Westerling, M. and Juska, G.: Charge transport and recombination in bulk heterojunction solar cells studied by the photoindinced charge extraction in linearily increasing voltage technique. Appl. Phys. Lett. 86, 112104 (2005).CrossRefGoogle Scholar
47.Melzer, C., Koop, E.J., Mihailetchi, W.D. and Blom, P.W.: Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14, 865 (2004).CrossRefGoogle Scholar
48.Cao, Y., Yu, G., Zhang, C., Menon, R. and Heeger, A.J.: Polymer light-emitting diodes with polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode. Synth. Met. 87, 171 (1997).CrossRefGoogle Scholar
49.Brabec, C.J., Shaheen, S.E., Winder, C., Sariciftci, N.S. and Denk, P.: Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80, 1288 (2002).CrossRefGoogle Scholar
50.Hung, L.S., Tang, C.W. and Mason, M.G.: Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 70, 152 (1997).CrossRefGoogle Scholar
51.Morgado, J., Friend, R.H. and Cacialli, F.: Environmental aging of poly( p -phenylenevinylene) based light-emitting diodes. Synth. Met. 114, 189 (2000).CrossRefGoogle Scholar
52.Sutherland, D.G.J., Carlisle, J.A., Elliker, P., Fox, G., Hagler, T.W., Jimenez, I., Lee, H.W., Pakbaz, K., Terminello, L.J., Williams, S.C., Himpsel, F.J., Shuh, D.K., Tong, W.M., Lia, J.J., Callcott, T.A. and Ederer, D.L.: Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy. Appl. Phys. Lett. 68, 2046 (1996).CrossRefGoogle Scholar
53.Scurlock, R.D., Wang, B., Ogilby, P.R., Sheats, J.R. and Clough, R.L.: Singlet oxygen as a reactive intermediate in the photodegradation of an electroluminescent polymer. J. Am. Chem. Soc. 117, 10194 (1995).CrossRefGoogle Scholar
54.Kumar, S., Biswas, A.K., Shukla, V.K., Awasthi, A., Anand, R.S. and Narain, J.: Application of spectroscopic ellipsometry to probe the environmental and photo-oxidative degradation of poly( p -phenylenevinylene) (PPV). Synth. Met. 139, 751 (2003).CrossRefGoogle Scholar
55.Do, L.M., Han, E.M., Nidome, Y., Fujihira, M., Kanno, T., Yoshida, S., Maeda, A. and Ikushima, A.J.: Observation of degradation processes of Al electrodes in organic electroluminescent devices by electroluminescence microscopy, atomic force microscopy, scanning electron microscopy, and Auger electron spectroscopy. J. Appl. Phys. 76, 5118 (1994).CrossRefGoogle Scholar
56.Schaer, M., Nüesch, F., Berner, D., Leo, W. and Zuppiroli, L.: Water vapor and oxygen degradation mechanisms in organic light emitting diodes. Adv. Funct. Mater. 11, 116 (2001).3.0.CO;2-B>CrossRefGoogle Scholar
57.Neugebauer, H., Brabec, C.J., Hummelen, J.C. and Sariciftci, N.S.: Stability and photodegradation mechanisms of conjugatedpolymer/fullerene plastic solar cells. Sol. Energy Mater. Sol. Cells 61, 35 (2000).CrossRefGoogle Scholar
58.Padinger, F., Fromherz, T., Denk, P., Brabec, C.J., Zettner, J., Hierl, T. and Sariciftci, N.S.: Degradation of bulk heterojunction solar cells operated in an inert gas atmosphere: A systematic study. Synth. Met. 121, 1605 (2001).CrossRefGoogle Scholar
59.Lewis, J.S. and Weaver, M.S.: Thin film permeation barrier technology for flexible organic light emitting device. IEEE J. Selec. Topics. Quantum Elect. 10, 45 (2004).CrossRefGoogle Scholar
60.Leterrier, Y.: Durability of nanosized oxygen barrier coatings on polymers. Prog. Mater. Sci. 48, 1 (2003).CrossRefGoogle Scholar
61.Sobrinho, A.S. da Silva, Latreche, M., Czeremuszkin, G., Klemberg-Sapieha, J.E. and Wertheimer, M.R.: Transparent barrier coatings on poly(ethylene terephthalate) by single frequency and dual frequency plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 16, 3190 (1998).CrossRefGoogle Scholar
62.Sobrinho, A.S. da Silva, Czeremuszkin, G., Latreche, M., Dennler, G. and Wertheimer, M.R.: A study of defects in ultra-thin transparent coatings on polymers. Surf. Coat. Technol. 116–119, 1204 (1999).CrossRefGoogle Scholar
63.Russi, G. and Nulman, M.: Effect of local flows in polymeric permeation reducing barrier. J. Appl. Phys. 74, 5471 (1993).CrossRefGoogle Scholar
64.Erlat, A.G., Spontak, R.J., Clarke, R.P., Robinson, T.C., Haaland, P.D., Tropha, Y., Harvey, N.G. and Vogler, E.A.: SiO x gas barrier coatings on polymer substrates: Morphology and gas transport considerations. J. Phys. Chem. B 103, 6047 (1999).CrossRefGoogle Scholar
65.Affinito, J.D., Gross, M.E., Coronado, C.A., Graff, G.L., Greenwell, E.N. and Martin, P.M.: A new method for fabricating transparent barrier layers. Thin Solid Films 290–291, 63 (1996).CrossRefGoogle Scholar
66.Affinito, J.D., Gross, M.E., Mournier, P.A., Shi, M.K. and Graff, G.L.: Ultrahigh rate, wide area, plasma polymerized films from high molecular weight/low vapor pressure liquid or solid monomer precursors. J. Vac. Sci. Technol. A 17, 1974 (1999).CrossRefGoogle Scholar
67.Weaver, M.S., Michalski, L.A., Rajan, K., Rothman, M.A., Silvernail, J.A., Burrows, P.E., Graff, G.L., Gross, M.E., Martin, P.M., Hall, M., Mast, E., Bonham, C., Bennett, W. and Zumhoff, M.: Organic light-emitting devices with extended operating lifetimes on plastic substrates. Appl. Phys. Lett. 81, 2929 (2002).CrossRefGoogle Scholar
68.Chwang, A.B., Rothman, M.A., Mao, S.Y., Hewitt, R.H., Weaver, M.S., Sivernail, J.A., Rajan, K., Hack, M., Brown, J.J., Chu, X., Moro, L., Krajewski, T. and Rutherford, N.: Thin film encapsulated flexible organic electroluminescent displays. Appl. Phys. Lett. 83, 413 (2003).CrossRefGoogle Scholar
69.Schuller, S., Schilinsky, P., Hauch, J. and Brabec, C.J.: Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements. Appl. Phys. A 79, 37 (2004).CrossRefGoogle Scholar
70.Mäkelä, T., Pienimaa, S. and Jussila, S.: Lithographic patterning of conductive polyaniline. Synth. Met. 101, 705 (1999).CrossRefGoogle Scholar
71.Granlund, T., Nyberg, T., Roman, L. Stolz, Svensson, M. and Inganäs, O.: Patterning of polymer light-emitting diodes with soft lithography. Adv. Mater. 12, 269 (2000).3.0.CO;2-5>CrossRefGoogle Scholar
72.Tak, Y-H., Kim, C-N., Kim, M-S., Kim, K-B., Lee, M-H. and Kim, S-T.: Novel patterning method using Nd:YAG and Nd: YVO4 lasers for organic light emitting diodes. Synth. Met. 138, 497 (2003).CrossRefGoogle Scholar
73.Akimasa, U. and Susumu, K.: Method of fabricating integrated thin film solar cells. U.S. Patent No. 6 168 968 (2001).Google Scholar