Skip to main content Accessibility help
×
Home

First-principles study on mechanical properties and electronic structures of Ti–Al intermetallic compounds

  • Wenjun Huang (a1), Fenjun Liu (a2), Jianbo Liu (a3) and Yaofei Tuo (a1)

Abstract

In this study, we investigated the elastic constants, moduli, hardness, and electronic structures of Ti–Al intermetallic compounds (TiAl, Ti3Al, and TiAl3) using first-principles calculations. The cohesive energy and formation enthalpy of these compounds are negative, which indicates that they are thermodynamically stable. We calculated the elastic constants and moduli using the stress–strain method and Voigt–Reuss–Hill approximation, respectively. We evaluated the mechanical anisotropy of these compounds using the anisotropic index and found that the results are in good agreement with other experimental and theoretical data. We evaluated the chemical bonding of these compounds by calculating their density of states, the results of which revealed that the bonding behavior of all Ti–Al intermetallic compounds involved a mixture of metallic and covalent bonds. We also estimated the Debye temperature and sound velocities of these Ti–Al intermetallic compounds.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: xiaohuang20180909@163.com

References

Hide All
1.Hong, T., Watsonyang, T.J., Freeman, A.J., Oguchi, T., and Xu, J.: Crystal structure, phase stability, and electronic structure of Ti–Al intermetallics: TiAl3. Phys. Rev. B 41, 12462 (1990).
2.Chubb, S.R., Papaconstantopoulos, D.A., and Klein, B.M.: First-principles study of L10 Ti–Al and V–Al alloys. Phys. Rev. B 38, 12120 (1988).
3.Mishin, Y. and Herzig, C.: Diffusion in the Ti–Al system. Acta Mater. 48, 589 (2000).
4.Asta, M., De Fontaine, D., and Van Schilfgaarde, M.: First-principles study of phase stability of Ti–Al intermetallic compounds. J. Mater. Res. 8, 2554 (2011).
5.Fleischer, R.L., Dimiduk, D.M., and Lipsitt, H.A.: Intermetallic compounds for strong high-temperature materials: Status and potential. Annu. Rev. Mater. Sci. 19, 231 (1989).
6.Yamaguchi, M. and Umakoshi, Y.: The deformation behaviour of intermetallic superlattice compounds. Prog. Mater. Sci. 34, 1 (1990).
7.Kattner, U.R., Lin, J-C., and Chang, Y.A.: Thermodynamic assessment and calculation of the Ti–Al system. Metall. Trans. A 23, 2081 (1992).
8.Ren, J.W., Li, Y.J., and Feng, T.: Microstructure characteristics in the interface zone of Ti/Al diffusion bonding. Mater. Lett. 56, 647 (2002).
9.Asta, M., De Fontaine, D., Van Schilfgaarde, M., Sluiter, M., and Methfessel, M.: First-principles phase-stability study of fcc alloys in the Ti–Al system. Phys. Rev. B 46, 5055 (1992).
10.Wróbel, J., Hector, L.G., Wolf, W., Shang, S.L., Liu, Z.K., and Kurzydłowski, K.J.: Thermodynamic and mechanical properties of lanthanum–magnesium phases from density functional theory. J. Alloys Compd. 512, 296 (2012).
11.Hector, L.G., Herbst, J.F., Wolf, W., Saxe, P., and Kresse, G.: Ab initio thermodynamic and elastic properties of alkaline-earth metals and their hydrides. Phys. Rev. B 76, 014121 (2007).
12.Song, Y., Guo, Z.X., and Yang, R.: First principles studies of TiAl-based alloys. J. Light Met. 2, 115 (2002).
13.Qi, C., Jiang, Y., Liu, Y., and Zhou, R.: Elastic and electronic properties of XB2 (X = V, Nb, Ta, Cr, Mo, and W) with AlB2 structure from first principles calculations. Ceram. Int. 40, 5843 (2014).
14.Duan, Y.H., Ma, L.S., Li, P., and Cao, Y.: First-principles calculations of electronic structures and optical, phononic, and thermodynamic properties of monoclinic α-spodumene. Ceram. Int. 43, 6312 (2017).
15.Wen, Z., Hou, H., Tian, J., Zhao, Y., Li, H., and Han, P.: First-principles investigation of martensitic transformation and magnetic properties of Ni2XAl (X = Cr, Fe, Co) Heusler compounds. Intermetallics 92, 15 (2018).
16.Duwez, P. and Taylor, J.L.: Crystal structure of TiAl. JOM 4, 70 (1952).
17.Penaloza, V.A. and Houska, C.R.: Refinements on the X-ray intensities from Ti3–2Al. An. Congr. Nac. Metal. 1983, 54 (1983).
18.Patil, S.K.R., Khare, S.V., Tuttle, B.R., Bording, J.K., and Kodambaka, S.: Mechanical stability of possible structures of PtN investigated using first-principles calculations. Phys. Rev. B 73, 104118 (2006).
19.Liu, Y., Jiang, Y., Zhou, R., and Feng, J.: Mechanical properties and chemical bonding characteristics of WC and W2C compounds. Ceram. Int. 40, 2891 (2014).
20.Liu, Y., Xing, J., Fu, H., Li, Y., Sun, L., and Lv, Z.: Structural stability, mechanical properties, electronic structures and thermal properties of XS (X = Ti, V, Cr, Mn, Fe, Co, Ni) binary compounds. Phys. Lett. A 381, 2648 (2017).
21.Liu, Y., Xing, J., Li, Y., Tan, J., Sun, L., and Yan, J.: Mechanical properties and anisotropy of thermal conductivity of Fe3−xCrxO4 (x = 0–3). J. Mater. Res. 31, 3805 (2016).
22.Liu, Y., Chong, X., Jiang, Y., Zhou, R., and Feng, J.: Mechanical properties and electronic structures of Fe–Al intermetallic. Phys. B 506, 1 (2017).
23.Liu, Y., Jiang, Y., Zhou, R., and Feng, J.: First principles study the stability and mechanical properties of MC (M = Ti, V, Zr, Nb, Hf, and Ta) compounds. J. Alloys Compd. 582, 500 (2014).
24.Wu, Z.J., Zhao, E.J., Xiang, H.Q., Hao, X.F., Liu, X.J., and Meng, J.: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 054115 (2007).
25.Tanaka, K.: Single-crystal elastic constants of gamma-TiAl. Philos. Mag. Lett. 73, 71 (1996).
26.Tanaka, K., Okamoto, K., Inui, H., Minonishi, Y., Yamaguchi, M., and Koiwa, M.: Elastic constants and their temperature dependence for the intermetallic compound Ti3Al. Philos. Mag. A 73, 1475 (1996).
27.Nakamura, M. and Kimura, K.: Elastic constants of TiAl3 and ZrAl3 single crystals. J. Mater. Sci. 26, 2208 (1991).
28.Jiang, X., Zhao, J., and Jiang, X.: Correlation between hardness and elastic moduli of the covalent crystals. Comput. Mater. Sci. 50, 2287 (2011).
29.Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).
30.Ravindran, P., Fast, L., Korzhavyi, P.A., Johansson, B., Wills, J., and Eriksson, O.: Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84, 4891 (1998).
31.Xiao, B., Feng, J., Zhou, C.T., Jiang, Y.H., and Zhou, R.: Mechanical properties and chemical bonding characteristics of Cr7C3 type multicomponent carbides. J. Appl. Phys. 109, 083521 (2011).
32.Feng, J., Xiao, B., Zhou, R., Pan, W., and Clarke, D.R.: Anisotropic elastic and thermal properties of the double perovskite slab–rock salt layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd, or Dy) natural superlattice structure. Acta Mater. 60, 3380 (2012).
33.Liu, Y., Jiang, Y., Zhou, R., and Feng, J.: First-principles calculations of the mechanical and electronic properties of Fe–W–C ternary compounds. Comput. Mater. Sci. 82, 26 (2014).
34.Richardson, R.C.D.: The wear of metals by hard abrasives. Wear 10, 291 (1967).
35.Tian, Y., Xu, B., and Zhao, Z.: Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 33, 93 (2012).
36.Feng, J., Xiao, B., Chen, J., Du, Y., Yu, J., and Zhou, R.: Stability, thermal and mechanical properties of PtxAly compounds. Mater. Des. 32, 3231 (2011).
37.Sun, L., Gao, Y., Yoshida, K., Yano, T., Li, Y., and Liu, Y.: Structural, mechanical, thermal and electronic properties of novel ternary carbide Al4Si2C5 under high pressure by DFT calculation. Int. J. Mod. Phys. B 31, 1750012 (2017).
38.He, T.W., Jiang, Y.H., Zhou, R., and Feng, J.: The electronic structure, mechanical and thermodynamic properties of Mo2XB2 and MoX2B4 (X = Fe, Co, Ni) ternary borides. J. Appl. Phys. 118, 075902 (2015).
39.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1998).
40.Pfrommer, B.G., Côté, M., Louie, S.G., and Cohen, M.L.: Relaxation of crystals with the quasi-newton method. J. Comput. Phys. 131, 233 (1997).
41.Liu, Y., Jiang, Y., Xing, J., Zhou, R., and Feng, J.: Mechanical properties and electronic structures of M23C6 (M = Fe, Cr, Mn)-type multicomponent carbides. J. Alloys Compd. 648, 874 (2015).
42.Li, Y., Gao, Y., Fan, Z., Xiao, B., Yue, Q., Min, T., and Ma, S.: First-principles study on the stability and mechanical property of eta M3W3C (M = Fe, Co, Ni) compounds. Phys. B 405, 1011 (2010).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed