Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T18:19:46.419Z Has data issue: false hasContentIssue false

First-principles study of the structural and elastic properties of Ti5Si3 with substitutions Zr, V, Nb, and Cr

Published online by Cambridge University Press:  31 January 2011

Hui-Yuan Wang
Affiliation:
Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
Wen-Ping Si
Affiliation:
Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
Shi-Long Li
Affiliation:
Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
Nan Zhang
Affiliation:
Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
Qi-Chuan Jiang*
Affiliation:
Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
*
a)Address all correspondence to this author. e-mail: jiangqc@mail.jlu.edu.cn
Get access

Abstract

The formation enthalpy, electronic structures, and elastic moduli of the intermetallic compound Ti5Si3 with substitutions Zr, V, Nb, and Cr are investigated by using first-principles methods based on the density-functional theory. Our calculation shows that the site occupancy behaviors of alloying elements in Ti5Si3, determined by their atom radius, are consistent with the available experimental observations. Furthermore, using the Voigt–Reuss–Hill (VRH) approximation method, we obtained the bulk modulus B, shear modulus G, and the Young’s modulus E. Among these four substitutions, the V, Nb, and Cr substitutions can improve the ductility of Ti5Si3 effectively, while Zr substitution has little effect on the elastic properties of Ti5Si3. The elastic property variations of Ti5Si3 due to different substitutions are found to be correlated with the Me4d–Me4d antibonding and the strengthened Me4d–Si bonding in the solids.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tang, Z.H., Williams, J.J., Thom, A.J., Akinc, M.: High temperature oxidation behavior of Ti5Si3-based intermetallics. Intermetallics 16, 1118 (2008)CrossRefGoogle Scholar
2.Wang, H.Y., , S.J., Zha, M., Li, S.T., Liu, C., Jiang, Q.C.: Influence of Cu addition on the self-propagating high-temperature synthesis of Ti5Si3 in Cu–Ti–Si system. Mater. Chem. Phys. 111, 463 (2008)CrossRefGoogle Scholar
3.Mitra, R.: Microstructure and mechanical behavior of reaction hot-pressed titanium silicide and titanium silicide-based alloys and composites. Metall. Mater. Trans. A 29, 1629 (1998)CrossRefGoogle Scholar
4.Zhang, L., Wu, J.: Ti5Si3 and Ti5Si3-based alloys: Alloying behavior, microstructure and mechanical property evaluation. Acta Mater. 46, 3535 (1998)CrossRefGoogle Scholar
5.Rosenkranz, R., Frommeyer, G., Smarsly, W.: Microstructures and properties of high melting point intermetallic Ti5Si3 and TiSi2 compounds. Mater. Sci. Eng., A 152, 288 (1992)CrossRefGoogle Scholar
6.Counihan, P.J., Crawford, A., Thadhani, N.N.: Influence of dynamic densification on nanostructure formation in Ti5Si3 intermetallic alloy and its bulk properties. Mater. Sci. Eng., A 267, 26 (1999)CrossRefGoogle Scholar
7.Williams, J.J., Ye, Y.Y., Kramer, M.J., Ho, K.M., Hong, L., Fu, C.L., Malik, S.K.: Theoretical calculations and experimental measurements of the structure of Ti5Si3 with interstitial additions. Intermetallics 8, 937 (2000)CrossRefGoogle Scholar
8.Schneibel, J.H., Rawn, C.J.: Thermal expansion anisotropy of ternary titanium silicides based on Ti5Si3. Acta Mater. 52, 3843 (2004)CrossRefGoogle Scholar
9.Gutmanas, E.Y., Gotman, I.: Reactive synthesis of ceramic-matrix composites under pressure. Ceram. Int. 26, 699 (2000)CrossRefGoogle Scholar
10.Ekman, M., Ozolins, V.: Electronic structure and bonding properties of titanium silicides. Phys. Rev. B 57, 4419 (1998)CrossRefGoogle Scholar
11.Kajitani, T., Kawase, T., Yamada, K., Hirabayashi, M.: Site occupation and local vibration of hydrogen isotopes in hexagonal Ti5Si3H(D)1−x. Trans. Jpn. Inst. Met. 27, 639 (1986)CrossRefGoogle Scholar
12.Thom, A.J., Young, V.G., Akinc, M.: Lattice trends in Ti5Si3Zx (Z = B, C, N, O and 0 < x < 1). J. Alloys Compd. 296, 59 (2000)CrossRefGoogle Scholar
13.Chen, Y., Shang, J.X., Zhang, Y.: Bonding characteristics and site occupancies of alloying elements in different Nb5Si3 phases from first principles. Phys. Rev. B 76, 184204 (2007)CrossRefGoogle Scholar
14.Zhang, C.L., Han, P., Li, J.M., Chi, M.: First-principles study of the mechanical properties of NiAl microalloyed by M (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd). J. Phys. D: Appl. Phys. 41, 095410 (2008)CrossRefGoogle Scholar
15.Pettifor, D.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345 (1992)CrossRefGoogle Scholar
16.Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954)CrossRefGoogle Scholar
17.Jhi, S.H., Ihm, J., Louie, S.G., Cohen, M.L.: Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature 399, 132 (1999)CrossRefGoogle Scholar
18.Wang, J.Y., Zhou, Y.C.: Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M = Ti, V, Nb, and Cr) ceramics. Phys. Rev. B 69, 214111 (2004)CrossRefGoogle Scholar
19.Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002)CrossRefGoogle Scholar
20.Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990)CrossRefGoogle Scholar
21.Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992)CrossRefGoogle ScholarPubMed
22.Pack, J.D., Monkhorst, H.J.: “Special points for Brillouin-zone integrations”—A reply. Phys. Rev. B 16, 1748 (1977)CrossRefGoogle Scholar
23.Artacho, E., Anglada, E., Diéguez, O., Gale, J.D., García, A., Junquera, J., Martin, R.M., Ordejón, P., Pruneda, J.M., Sánchez-Portal, D., Soler, J.M.: The SIESTA method: Developments and applicability. J. Phys. Condens. Matter 20, 064208 (2008)CrossRefGoogle ScholarPubMed
24.Fischer, T.H., Almlof, J.: General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768 (1992)CrossRefGoogle Scholar
25.Voigt, W.: Physical Properties of Crystals 2nd ed (Teubner, Leipzig 1928)716 Google Scholar
26.Reuss, A.: Calculation of low limit of mixed crystals. Z. Angew. Math. Mech. 9, 49 (1929)CrossRefGoogle Scholar
27.Hill, R.: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. London, Sect. A 65, 349 (1952)CrossRefGoogle Scholar
28.Kishida, K., Fujiwara, M., Adachi, H., Tanaka, K., Inui, H.: Plastic deformation of single crystals of Ti5Si3 with the hexagonal D88 structure. Acta Mater. 58, 846 (2010)CrossRefGoogle Scholar
29.Filippi, C., Singh, D.J., Umrigar, C.J.: All-electron local-density and generalized-gradient calculations of the structural properties of semiconductors. Phys. Rev. B 50, 14947 (1994)CrossRefGoogle ScholarPubMed
30.Zhang, L., Wu, J.: Thermal expansion and elastic moduli of the silicide based intermetallic alloys. Scr. Mater. 38, 307 (1998)CrossRefGoogle Scholar
31.Long, X., Chong, Z.: Electronic structure of titanium silicides. Trans. Nonferrous Met. Soc. China 4, 25 (1994)Google Scholar