Skip to main content Accessibility help
×
Home

First principles and experimental studies of empty Si46 as anode materials for Li-ion batteries

  • Kwai S. Chan (a1), Michael A. Miller (a1), Wuwei Liang (a1), Carol Ellis-Terrell (a1) and Candace K. Chan (a2)...
  • Please note a correction has been issued for this article.

Abstract

The objective of this investigation was to utilize the first-principles molecular dynamics computational approach to investigate the lithiation characteristics of empty silicon clathrates (Si46) for applications as potential anode materials in lithium-ion batteries. The energy of formation, volume expansion, and theoretical capacity were computed for empty silicon clathrates as a function of Li. The theoretical results were compared against experimental data of long-term cyclic tests performed on half-cells using electrodes fabricated from Si46 prepared using a Hofmann-type elimination–oxidation reaction. The comparison revealed that the theoretically predicted capacity (of 791.6 mAh/g) agreed with experimental data (809 mAh/g) that occurred after insertion of 48 Li atoms. The calculations showed that overlithiation beyond 66 Li atoms can cause large volume expansion with a volume strain as high as 120%, which may correlate to experimental observations of decreasing capacities from the maximum at 1030 mAh/g to 553 mA h/g during long-term cycling tests. The finding suggests that overlithiation beyond 66 Li atoms may have caused damage to the cage structure and led to lower reversible capacities.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: kchan@swri.edu

References

Hide All
1. Wen, C.J. and Huggins, R.A.: Chemical diffusion in intermediate phases in the lithium–silicon system. J. Solid State Chem. 37, 271 (1981).
2. Timmons, A. and Dahn, J.R.: Isotropic volume expansion of particles of amorphous metallic alloys in composite negative electrodes for Li-ion batteries. J. Electrochem. Soc. 154, A444 (2007).
3. Graetz, J., Ahn, C.C., Yazami, R., and Fultz, B.: Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6(9), A194 (2003).
4. Takamura, T., Ohara, S., Uehara, M., Suzuki, J., and Sekine, K.: A vacuum deposited Si film having a Li extraction capacity over 2000 mA h/g with a long cycle life. J. Power Sources 129, 96 (2004).
5. Kim, H., Han, B., Choo, J., and Cho, J.: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem., Int. Ed. 47, 1 (2008).
6. Green, M., Fielder, E., Scrosati, B., Wachtler, M., and Moreno, J.S.: Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 6(5), A75 (2003).
7. Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y.: High performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008).
8. Cui, L-F., Ruffo, R., Chan, C.K., Peng, H., and Cui, Y.: Crystalline–amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491 (2009).
9. Lewis, R.B., Timmons, A., Mar, R.E., and Dahn, J.R.: In situ AFM measurements of the expansion and contraction of amorphous Sn–Co–C films reacting with lithium. J. Electrochem. Soc. 154(3), A213 (2007).
10. Timmons, A. and Dahn, J.R.: In situ optical observations of particle motion in alloy negative electrodes for Li-ion batteries. J. Electrochem. Soc. 153, A1206 (2006).
11. Beattie, S.D., Larcher, D., Morcrette, M., Simon, B., and Tarascon, J-M.: Si electrodes for Li-ion batteries—A new way to look at an old problem. J. Electrochem. Soc. 155(2), A158 (2008).
12. Sethuraman, V.A., Chon, M.J., Shimshak, M., Srinivasan, V., and Guduru, P.R.: In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 195, 5062 (2010).
13. Eom, J.Y., Park, J.W., Kwon, H.S., and Rajendran, S.: Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling. J. Electrochem. Soc. 153(9), A1678 (2006).
14. Zhang, Y., Zhang, X.G., Zhang, H.L., Zhao, Z.G., Li, F., Liu, C., and Cheng, H.M.: Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim. Acta 51, 4994 (2006).
15. Zhang, Y., Zhao, Z.G., Zhang, X.G., Zhang, H.L., Li, F., Liu, C., and Cheng, H.M.: Pyrolytic carbon-coated silicon/carbon nanotube composites: Promising application for Li-ion batteries. Int. J. Nanomanuf. 2(1/2), 4 (2008).
16. Ryu, J.H., Kim, J.W., Sung, Y-E., and Oh, S.M.: Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 7(10), A306 (2004).
17. Huggins, R.A. and Nix, W.D.: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57 (2000).
18. Wu, H., Chan, G., Choi, J.W., Ryu, I., Yao, Y., McDowell, M.T., Lee, S.W., Jackson, A., Yang, Y., Hu, L., and Cui, Y.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7(5), 310 (2012).
19. Wu, H. and Cu, Y.: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5), 414 (2012).
20. Aydinol, M.K. and Ceder, G.: First-principles prediction of insertion potentials in Li–Mn for secondary Li batteries. J. Electrochem. Soc. 144(11), 3832 (1997).
21. Kubota, Y., Escano, M.C.S., Nakanishi, H., and Kasai, H.: Crystal and electronic structure of Li15Si4 . J. Appl. Phys. 102, 053704 (2007).
22. Chevrier, V.L., Zwanziger, J.W., and Dahn, J.R.: First principles studies of silicon as a negative electrode materials for lithium-ion batteries. Can. J. Phys. 87, 625 (2009).
23. Chevrier, V.L. and Dahn, J.R.: First principles model of amorphous silicon lithiation. J. Electrochem. Soc. 156(6), A454 (2009).
24. Chevrier, V.L. and Dahn, J.R.: First principles studies of disordered lithiated silicon. J. Electrochem. Soc. 157(4), A392 (2010).
25. Zhang, Q., Zhang, W., Wan, W., Cui, Y., and Wang, E.: Lithium insertion in silicon nanowires: An ab initio study. Nano Lett. 10, 3243 (2010).
26. Chan, K.S. and Miller, M.A.: Anodes—Synthesis and characterization of silicon clathrates for anode applications in lithium-ion batteries. Energy Storage R&D, FY2014 Final Report, Southwest Research Institute (2014).
27. Li, Y., Raghavan, R., Wagner, N.A., Davidowski, S.K., Baggetto, L., Zhao, R., Cheng, Q., Yarger, J.L., Veith, G.M., Ellis-Terrell, C., Miller, M.A., Chan, K.S., and Chan, C.K.: Type I clathrates as novel silicon anodes: An electrochemical and structural investigation. Adv. Sci. 2, 1500057 (2015). doi: 10.1002/advs.201500057.
28. Peng, X., Wei, Q., Li, Y., and Chan, C.K.: First-principles study of lithiation of Type I Ba-doped silicon clathrates. J. Phys. Chem. C 119(51), 28247 (2015). doi: 10.1021/acs.jpcc.5b07523.
29. Adams, G.B., O'Keeffe, M., Kemkov, A.A., Sankey, O.F., and Huang, Y-M.: Wide-band-gap Si in open four-fold-coordinated clathrate structures. Phys. Rev. B: Condens. Matter Mater. Phys. 49, 8084 (1994).
30. San-Miguel, A. and Toulemonde, P.: High-pressure properties of group IV clathrates. High Pressure Res. 25, 159 (2005).
31. Mélinon, P., Kéghélian, P., Perez, A., Champagnon, B., Guyot, Y., Saviot, L., Reny, E., Cros, C., Pouchard, M., and Dianoux, A.J.: Phonon density of states of silicon clathrates: Characteristic width narrowing effect with respect to the diamond phase. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 10099 (1999).
32. CPMD, Version 3.13, IBM Corp 1990-2008, MPI für Festkörperforschung Stuttgart, 1997–2001, http://www.cpmd.org.
33. Car, R. and Parrinello, M.: Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett. 55(22), 2471 (1985).
34. Guloy, A.M., Ramlau, R., Tang, Z., Schnelle, W., Baitinger, M., and Grin, Y.: A guest-free germanium clathrate. Nature, 443, 320 (2006). doi: 10.1038/nature05145.
35. Chan, K.S., Miller, M.A., Ellis-Terrell, C., and Chan, C.K.: Synthesis and characterization of empty silicon clathrates for anode applications in Li-ion batteries. In Proceedings of 2016 MRS Spring Meeting, March 28-April 1, 2016, Phoenix, AZ. MRS Advance, CJO 2016, doi: 10.1557/adv.2016.434.
36. Li, J. and Dahn, J.R.: An in-situ x-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154, A156 (2007).
37. Langer, T., Dupke, S., Trill, H., Passerini, S., Eckert, H., Pöttgen, R., and Winter, M.: Electrochemical lithiation of silicon clathrate-II. J. Electrochem. Soc. 159, A1318 (2012).
38. Wagner, N.A., Raghavan, R., Zhao, R., Wei, Q., Peng, X., and Chan, C.K.: Electrochemical cycling of sodium-filled silicon clathrate. ChemElectroChem, 1(2), 347 (2014).

Keywords

First principles and experimental studies of empty Si46 as anode materials for Li-ion batteries

  • Kwai S. Chan (a1), Michael A. Miller (a1), Wuwei Liang (a1), Carol Ellis-Terrell (a1) and Candace K. Chan (a2)...
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: