Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-01T10:08:42.892Z Has data issue: false hasContentIssue false

Film microstructure-deposition condition relationships in the growth of epitaxial NiO films by metalorganic chemical vapor deposition on oxide and metal substrates

Published online by Cambridge University Press:  31 January 2011

Anchuan Wang
Affiliation:
Science and Technology Center for Superconductivity, The Materials Research Center, and the Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
John A. Belot
Affiliation:
Science and Technology Center for Superconductivity, The Materials Research Center, and the Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
Tobin J. Marks
Affiliation:
Science and Technology Center for Superconductivity, The Materials Research Center, and the Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
Get access

Abstract

High-quality epitaxial or highly textured NiO thin films can be grown at temperatures of 400–750°C by low-pressure metalorganic chemical vapor deposition (MOCVD) on MgO, SrTiO3, C-cut sapphire, as well as on single crystal and highly textured Ni (200) metal substrates using Ni(dpm)2 (dpm – dipivaloylmethanate) as the volatile precursor and O2 or H2O as the oxidizer/protonolyzer. X-ray diffraction (XRD), scanning electron microscopy/energy dispersive detection (SEM/EDX), and atomic force microscopy (AFM) confirm that the O2-derived NiO films are smooth and that the quality of the epitaxy can be improved by decreasing the growth temperature and/or the precursor flow rate. However, low growth temperatures (400–500 °C) lead to rougher surfaces and carbon contamination. The H2O-derived NiO films, which can be obtained only at relatively high temperatures (650–750 °C), exhibit slightly broader ω scan full width half-maximum (FWHM) values and rougher surfaces but no carbon contamination. Using H2O as the oxidizer/protonolyzer, smooth and highly textured NiO (111) films can be grown on easily oxidized single crystal and highly textured Ni (200) metal substrates, which is impossible when O2 is the oxidizer. The textural quality of these films depends on both the quality of the metal substrates and the gaseous precursor flow rate.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Vincent, C. A., Bonino, F., Lazzari, M., and Scrosati, B., Modern Batteries (Edward Arnold, London, 1987).Google Scholar
2.Yamada, S., Yoshioka, T., Miyashita, M., Urabe, K., and Kitao, M., J. Appl. Phys. 63, 2116 (1988).CrossRefGoogle Scholar
3.Scarminio, J., Urbano, A., Grades, B. J., and Gorenstein, A., J. Mater. Sci. Lett. 11, 562 (1992).CrossRefGoogle Scholar
4.Maruyama, T. and Arai, S., Sol. Energy Mater. Sol. Cells 30, 257 (1993).CrossRefGoogle Scholar
5.Yoshimura, K., Miki, T., and Tanemura, S., Jpn. J. Appl. Phys. 34, 2440 (1995).CrossRefGoogle Scholar
6.Sato, Y., Tamura, S., and Murai, K., Jpn. J. Appl. Phys. Pt. 1 35, 6275 (1996).Google Scholar
7.Miller, E. L. and Rocheleau, R. E., J. Electrochem. Soc. 144, 1995 (1997).CrossRefGoogle Scholar
8.Anthony, T. C., Brug, J. A., and Zhang, S., IEEE Trans. Magn. 30, 3819 (1994).CrossRefGoogle Scholar
9.Lai, C., Matsuyama, H., White, R. L., and Anthony, T. C., IEEE Trans. Magn. 31, 2609 (1995).Google Scholar
10.Nakatani, R., Hoshino, K., Hoshiya, H., and Sugita, Y., Mater. Trans. JIM 37, 1710 (1996).CrossRefGoogle Scholar
11.Lee, S.S., Hwang, D.G., Park, C. M., Lee, K. A., Kim, M.Y., and Rhee, J. R., IEEE Trans. Magn. 32, 3416 (1996).CrossRefGoogle Scholar
12.Lee, S. S., Hwang, D. G., Park, C. M., Lee, K. A., and Rhee, J.R., J. Appl. Phys. 81, 5298 (1997).CrossRefGoogle Scholar
13.Lai, C., Regan, T. J., White, R. L., and Anthony, T. C., J. Appl. Phys. 81, 3989 (1997).CrossRefGoogle Scholar
14.Han, D. H., Zhu, J. G., and Judy, J. H., J. Appl. Phys. 81, 4996 (1997).CrossRefGoogle Scholar
15.Lai, C., Bailey, W. E., White, R. L., and Anthony, T. C., J. Appl. Phys. 81, 4990 (1997).CrossRefGoogle Scholar
16.Sato, H., Minami, T., Takata, S., and Yamada, T., Thin Solid Films 236, 27 (1993).CrossRefGoogle Scholar
17.Puspharajah, P., Radhakrishna, S., and Arof, A. K., J. Mater. Sci. 32 (11), 3001 (1997).CrossRefGoogle Scholar
18.Tasaka, Y., Kuroda, H., Tanaka, M., and Usami, S., Thin Solid Films 281–282, 441 (1996).CrossRefGoogle Scholar
19.Schulz, D. L., Parilla, P. A., Gopalaswamy, H., Swartzlander, A., Duda, A., Blaugher, R. D., and Ginley, D. S., Mater. Res. Bull. 30, 689 (1995).CrossRefGoogle Scholar
20.Decker, F., Pileggi, R., Passerini, S., and Scrosati, B., J. Electrochem. Soc. 138, 3182 (1991).CrossRefGoogle Scholar
21.Hinds, B. J., McNeely, R. J., Studebaker, D. L., Marks, T.J., Hogan, T. P., Schindler, J. L., Kannewurf, C. R., Zhang, X. F., and Miller, D., J. Mater. Res. 12, 1214 (1997).CrossRefGoogle Scholar
22.Wang, A., Belot, J. A., Marks, T. J., Markworth, P. R., Chang, R. P.H, Chudzik, M. P., and Kannewurf, C. R., unpublished.Google Scholar
23.Khoi, N. N., Smeltzer, W. W., and Embury, J. D., J. Electrochem. Soc. 122, 1495 (1975).CrossRefGoogle Scholar
24.Hawsey, R. and Peterson, D., Superconductor Industry/Fall, 1996, pp. 2329.Google Scholar
25.Norton, D. P., Goyal, A., Budai, J. D., Christen, D. K., Kroeger, D. M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C. E., Lee, D. F., Sales, B. C., and List, F. A., Science 274, 755 (1996).CrossRefGoogle Scholar