Skip to main content Accessibility help

Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability

  • Baojia Li (a1), Ming Zhou (a1), Run Yuan (a1) and Lan Cai (a1)


Based on the classical wetting theories, two theoretically predicted formulas of the apparent contact angles on square-pillar-array microstructured surfaces for Wenzel mode and Cassie mode have been derived, respectively. The theories of superhydrophobic stability on microstructured surfaces have been summarized. Four square-pillar-array samples were fabricated on titanium substrates by using the femtosecond laser micromachining technology, and wettability was analyzed by both experimental and analytical methods. The results showed that the titanium-based surfaces are superhydrophobic. The maximal apparent contact angle is up to 156.9°, while the corresponding sliding angle is 4.7°. Testing of the superhydrophobic stability of the surfaces showed that the maximal deviation of the apparent contact angles is only 0.6°. Analyses indicate that the stable superhydrophobicity of the supplied titanium-based surfaces is within a certain range and not perfect. To improve that, a practical controllable method is proposed herein for the design of a stable superhydrophobic surface.


Corresponding author

a)Address all correspondence to this author. e-mail: or


Hide All
1Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K.Watanabe, T.: Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16(13), 5754 2000
2Guo, Z-G.Liu, W-M.: Progress in biomimicing of super-hydrophobic surface. Prog. Chem. 18(6), 721 2006 (in Chinese)
3Gu, G-T.Dang, H-X.: Development of super-hydrophobic transparent thin films. J. Henan Univ. (Nat. Sci.) 34(4), 22 2004 (in Chinese)
4Nakajima, A., Hashimoto, K.Watanabe, T.: Recent studies on super-hydrophobic film. Monatsh. Chem. 132, 31 2001
5Shibuichi, S., Yamamoto, T., Onda, T.Tsujii, K.: Super water- and oil-repellent surfaces resulting from fractal structure. J. Colloid Interface Sci. 208(1), 287 1998
6Cui, G-L., Xu, W., Zhou, X-H., Xiao, X-W., Jiang, L.Zhu, D-B.: Rose-like superhydrophobic surface based on conducting dmit salt. Colloids Surf., A 272(1–2), 63 2006
7Bormashenko, E., Stein, T., Whyman, G., Bormashenko, Y.Pogreb, R.: Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir 22, 9982 2006
8Abdelsalam, M.E., Bartlett, P.N., Kelf, T.Baumberg, J.: Wetting of regularly structured gold surfaces. Langmuir 21, 1753 2005
9Wang, C-H., Song, Y-Y., Zhao, J-W.Xia, X-H.: Semiconductor supported biomimetic superhydrophobic gold surfaces by the galvanic exchange reaction. Surf. Sci. 600(4), L38 2006
10Bormashenko, E., Bormashenko, Y., Whyman, G., Pogreb, R.Stanevsky, O.: Micrometrically scaled textured metallic hydrophobic interfaces validate the Cassie–Baxter wetting hypothesis. J. Colloid Interface Sci. 302, 308 2006
11Zhao, N., Shi, F., Wang, Z-Q.Zhang, X.: Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir 21, 4713 2005
12Wang, S-T., Feng, L.Jiang, L.: One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces. Adv. Mater. 18(6), 767 2006
13Chen, Z.Geng, X-G.: Micro/nano-structure and mechanism of anti-sticky thin film on copper substrate. Mater. Protect. 38(7), 1 2005 (in Chinese)
14Shirtcliffe, N.J., McHale, G., Newton, M.I.Perry, C.C.: Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Langmuir 21, 937 2005
15Han, J.T., Jang, Y., Lee, D.Y., Park, J.H., Song, S-H., Ban, D-Y.Cho, K.: Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development. J. Mater. Chem. 15, 3089 2005
16Huang, L., Lau, S.P., Yang, H.Y., Leong, E.S.P.Yu, S.F.: Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J. Phys. Chem. B 109, 7746 2005
17Kitazawa, S., Choi, Y.Yamamoto, S.: In situ optical spectroscopy of PLD of nano-structured TiO2. Vacuum 74, 637 2004
18György, E., Pino, A. Pérez del, Serra, P.Morenza, J.L.: Influence of the ambient gas in laser structuring of the titanium surface. Surf. Coat. Technol. 187, 245 2004
19György, E., Pino, A. Pérez del, Serra, P.Morenza, J.L.: Growth of surface structures on through pulsed Nd:YAG laser irradiation in vacuum. Appl. Surf. Sci. 197–198, 851 2002
20Koshizaki, N., Narazaki, A.Sasaki, T.: Preparation of nanocrystalline titania films by pulsed laser deposition at room temperature. Appl. Surf. Sci. 197-198, 624 2002
21Tian, Y-S., Chen, C-Z., Wang, D-Y.Lei, T-Q.: Research progress of laser surface treatment on titanium alloys. Metal Heat Treat. 30(8), 29 2005 (in Chinese)
22Henč-Bartolić, V., Andreić, Z., Gracin, D., Kunze, H.J.Stubičar, M.: Nitrogen laser beam interaction with titanium surface. Fiziki, A 4(2), 449 1995
23Lima, M.S.F., Folio, F.Mischler, S.: Microstructure and surface properties of laser-remelted titanium nitride coatings on titanium. Surf. Coat. Technol. 199, 83 2005
24Tsukamotoa, M., Asukab, K., Nakano, H., Hashida, M., Katto, M., Abe, N.Fujita, M.: Periodic microstructures produced by femtosecond laser irradiation on titanium plate. Vacuum 80, 1346 2006
25Vorobyev, A.Y.Guo, C-L.: Femtosecond laser structuring of titanium implants. Appl. Surf. Sci. 253, 7272 2007
26Sun, R-D., Nakajima, A., Fujishima, A., Watanabe, T.Hashimoto, K.: Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 105(10), 1984 2001
27Liu, Q-J., Wu, X-H., Liu, Q.He, Y-H.: Study on photocatalytic and hydrophilic properties of TiO2/Fe2O3 composite thin film. J. Funct. Mater. 34(2), 225 2003 (in Chinese)
28Liu, Q-J., Wu, X-H.Liu, Q.: Effect of heat-treated temperature on photocatalytic and hydrophilic properties of TiO2 thin film. J. Funct. Mater. 34(2), 189 2003 (in Chinese)
29Yang, Y-C., Guan, Z-S., Feng, W-H., Ye, Z-Y., Si, Z-X., Song, T-L.Jiang, L.: Study on wettability of sol-gel TiO2 film ablated by laser. Acta Chim. Sinica 60(10), 1773 2002 (in Chinese)
30Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988 1936
31Wenzel, R.N.: Surface roughness and contact angle (letter). J. Phys. Colloid Chem. 53, 1466 1949
32Cassie, A.B.D.Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546 1944
33Cassie, A.B.D.: Contact angles. Discuss. Faraday Soc. 3, 11 1948
34de Gennes, P.G., Brochard-Wyart, F.Quéré, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves Springer New York 2004 219–221
35Patankar, N.A.: On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19, 1249 2003
36He, B., Patankar, N.A.Lee, J.: Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19, 4999 2003
37Zheng, L-J., Wu, X-D., Lou, Z.Wu, D.: Superhydrophobic surfaces fabricated by microstructuring on surfaces. Chin. Sci. Bull. 49(17), 1691 2004 (in Chinese)
38Zhu, L., Feng, Y-Y., Ye, X-Y.Zhou, Z-Y.: Tuning wettability and getting superhydrophobic surface by controlling surface roughness with well-designed microstructures. Sens. Actuators, A 130–131, 595 2006
39Marmur, A.: Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be? Langmuir 19, 8343 2003
40Li, W.Amirfazli, A.: A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces. J. Colloid Surf. Sci. 292, 195 2005
41Lafuma, A.Quéré, D.: Superhydrophobic states. Nat. Mater. 2, 457 2003
42Patankar, N.A.: Transition between superhydrophobic states on rough surfaces. Langmuir 20, 7097 2004
43Liu, B.Lange, F.F.: Pressure induced transition between superhydrophobic states: Configuration diagrams and effect of surface feature size. J. Colloid Interface Sci. 298, 899 2006
44Zheng, Q-S., Yu, Y.Zhao, Z-H.: Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir 21, 12207 2005
45Bhushan, B., Nosonovsky, M.Jung, Y.C.: Towards optimization of patterned superhydrophobic surfaces. J. R. Soc. Interface 4, 643 2007
46Nosonovsky, M.Bhushan, B.: Hierarchical roughness makes superhydrophobic states stable. Microelectron. Eng. 84, 382 2007
47Nosonovsky, M.: Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 3157 2007
48Bormashenko, E., Pogreb, R., Whyman, G.Erlich, M.: Cassie– Wenzel wetting transition in vibrating drops deposited on rough surfaces: Is the dynamic Cassie–Wenzel wetting transition a 2D or 1D affair? Langmuir 23, 6501 2007
49Bormashenko, E., Pogreb, R., Whyman, G.Erlich, M.: Resonance Cassie–Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface. Langmuir 23, 12217 2007


Related content

Powered by UNSILO

Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability

  • Baojia Li (a1), Ming Zhou (a1), Run Yuan (a1) and Lan Cai (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.