Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T04:50:42.286Z Has data issue: false hasContentIssue false

Fabrication of rutile TiO2 thin films by low-temperature, bias-assisted cathodic arc deposition and their dielectric properties

Published online by Cambridge University Press:  01 April 2006

A.P. Huang
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
Paul K. Chu*
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
L. Wang
Affiliation:
Solid State Laboratory of Electronic Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
W.Y. Cheung
Affiliation:
Solid State Laboratory of Electronic Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
J.B. Xu
Affiliation:
Solid State Laboratory of Electronic Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
S.P. Wong
Affiliation:
Solid State Laboratory of Electronic Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
*
a) Address all correspondence to this author. e-mail: paul.chu@cityu.edu.hk
Get access

Abstract

The use of rutile-type titanium dioxide (TiO2) thin films as advanced gate dielectrics has been hampered by thermodynamic instability during the high deposition or annealing temperature of 800 °C. In this work, we demonstrate that rutile-type TiO2 thin films can be produced on p-type Si (100) at lower substrate temperature by means of bias-assisted cathodic arc deposition. The influence of the substrate bias on the microstructural and dielectric characteristics of the TiO2 thin films is investigated in detail. Our results show that by applying a suitable bias to the Si substrate, as-deposited rutile-type TiO2 thin films can be obtained at 450 °C. The permittivity of the materials increases significantly from 21 up to 76. The interfacial and electrical properties of TiO2/Si (100) are also improved. The effects and mechanism of the bias on the microstructural and dielectric characteristics are described.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Peercy, S.P.: The drive to miniaturization. Nature 406, 1023 (2000).CrossRefGoogle ScholarPubMed
2.Wilk, G.D., Wallace, R.M.: Stable zirconium silicate gate dielectrics deposited directly on silicon. Appl. Phys. Lett. 76, 112 (2000).CrossRefGoogle Scholar
3.Li, Y.M., Lee, J.W., Tang, T.W., Chao, T.S., Lei, T.F., Sze, S.M.: Numerical simulation of quantum effects in high-k gate dielectric MOS structures using quantum mechanical models. Comput. Phys. Commun. 147, 214 (2002).CrossRefGoogle Scholar
4.Aoki, Y., Kunitake, T.: Solution-based fabrication of high-k gate dielectrics for next-generation metal-oxide semiconductor transistors. Adv. Mater. 16, 118 (2004).CrossRefGoogle Scholar
5.Hubbard, K.J., Schlom, D.G.: Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11, 2757 (1996).CrossRefGoogle Scholar
6.Shannon, R.D., Pask, J.A.: Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 48, 391 (1965).CrossRefGoogle Scholar
7.Schuisky, M., Harsta, A., Aidla, A., Kukli, K., Kiisler, A.A., Aarik, J.: Atomic layer chemical vapor deposition of TiO2 low temperature epitaxy of rutile and anatase. J. Electrochem. Soc. 147, 3319 (2000).CrossRefGoogle Scholar
8.Kadoshima, M., Hiratani, M., Shimamoto, Y., Torii, K., Miki, H., Kimura, S., Nabatame, T.: Rutile-type TiO2 thin film for high-k gate insulator. Thin Solid Films 424, 224 (2003).CrossRefGoogle Scholar
9.Lai, Y.S., Chen, K.J., Chen, J.S.: Investigation of the interlayer characteristics of Ta2O5 thin films deposited on bare, N2O, and NH3 plasma nitridated Si substrates. J. Appl. Phys. 91, 6428 (2002).CrossRefGoogle Scholar
10.Campbell, S.A., Kim, H.S., Gilmer, D.C., He, B., Ma, T.P., Gladfelter, W.L.: Titanium dioxide (TiO2)-based gate insulators. IBM J. Res. Dev. 43, 383 (1999).CrossRefGoogle Scholar
11.Huang, A.P., Xu, S.L., Zhu, M.K., Wang, B., Yan, H., Liu, T.: Crystallization control of sputtered Ta2O5 thin films by substrate bias. Appl. Phys. Lett. 83, 3278 (2003).CrossRefGoogle Scholar
12.Zhang, T., Chu, P.K., Brown, I.G.: Effects of cathode materials and arc current on optimal bias of a cathodic arc through a magnetic duct. Appl. Phys. Lett. 80, 3700 (2002).CrossRefGoogle Scholar
13.Jeynes, C., Jafri, Z.H., Webb, R.P., Kimber, A.C., Ashwin, M.J.: Accurate RBS measurements of the indium content of InGaAs thin films. Surf. Interf. Anal. 25, 254 (1997).3.0.CO;2-F>CrossRefGoogle Scholar
14.Holzer, J., McCarthy, G. National Bureau of Standards (US) Monogr. 25, 7, 82 (1969). JCPDS Powder Diffraction File Cards: 21-1272 (TiO2-anatase), 1994.Google Scholar
15.Syvinski, W., McCarthy, G. National Bureau of Standards (US) Monogr. 25, 7, 83 (1969). JCPDS Powder Diffraction File Cards: 21-1276 (TiO2-rutile), 1994.Google Scholar
16.Huang, A.P., Xu, S.L., Zhu, M.K., Li, G.H., Liu, T., Wang, B., Yan, H.: Oriented growth of Ta2O5 films induced by substrate bias. J. Cryst. Growth 255, 145 (2003).CrossRefGoogle Scholar
17.Ono, H., Hosokawa, Y., Ikarashi, T., Shinada, K.: Formation mechanism of interfacial Si-oxide layers during postannealing of Ta2O5/Si. J. Appl. Phys. 89, 995 (2001).CrossRefGoogle Scholar
18.Song, C.F., Lu, M.K., Yang, P., Xu, D., Yuan, D.R.: Structure and photoluminescence properties of sol-gel TiO2–SiO2 films. Thin Solid Films 413, 155 (2002).CrossRefGoogle Scholar
19.Scarel, G., Aita, C.R., Tanaka, H., Hisano, K.: Far-infrared spectra of amorphous titanium dioxide films. J. Non-Cryst. Solids 303, 50 (2002).CrossRefGoogle Scholar
20.Ono, H., Koyanagi, K.I.: Infrared absorption peak due to Ta=O bonds in Ta2O5 thin films. Appl. Phys. Lett. 77, 1431 (2000).CrossRefGoogle Scholar
21.Lee, Y.H.: A role of energetic ions in RF-biased PECVD of TiO2. Vacuum 51(4), 503 (1998).Google Scholar
22.Cava, R.F., Peck, W.F., Krajewski, J.J.: Enhancement of the dielectric-constant of Ta2O5 through substitution with TiO2. Nature 377, 6546 (1995).CrossRefGoogle Scholar
23.Wilk, G.D., Wallace, R.M., Anthony, J.M.: High-kappa gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
24.Wolf, H.F.: Semiconductors (Wiley, New York, 1971), Chap. 5, p. 4.Google Scholar