Skip to main content Accessibility help

Fabrication of ordered Ta2O5 nanodots using an anodic aluminum oxide template on Si substrate

  • Ching-Jung Yang (a1), Chih Chen (a1), Pu-Wei Wu (a1), Jia-Min Shieh (a2), Shun-Min Wang (a1) and Shih-Wei Liang (a1)...


Ordered arrays of Ta2O5 nanodots were prepared using anodic aluminum oxide (AAO) as a template to support localized oxidation of TaN. Films of TaN (50 nm) and Al (1.5 μm) were deposited successively on p-type Si wafers and followed by a two-step anodization process at 40 V using oxalic acid as the electrolyte. The first anodization promoted growth of irregular AAO from overlying Al film. After chemical etching, the second anodization was performed to develop well-organized AAO channels and initiate oxidation of underlying TaN film to form tantalum oxide nanodots at the AAO pore bottoms. X-ray photoelectron spectroscopy results confirmed the chemical nature of nanodots as stoichmetric Ta2O5. X-ray diffraction demonstrated the amorphous characteristic of Ta2O5. As shown in field-emission scanning electron microscopy and transmission electron results, the Ta2O5 nanodots exhibited a hillock structure 80 nm in diameter at the bottom and 50 nm in height. We also synthesized 30-nm nanodots by adjusting AAO formation electrochemistry. This demonstrates the general applicability of the AAO template method for nanodot synthesis from nitride to oxide at a desirable size.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Jeong, S-H., Hwang, H-Y., Lee, K-H., and Jeong, Y.: Template-based carbon nanotubes and their application to a field emitter. Appl. Phys. Lett. 78, 2052 (2001).
2Chen, P-L., Huang, W-J., Chang, J-K., Kuo, C-T., and Pan, F-M.: Fabrication and field emission characteristics of highly ordered titanium oxide nanodot arrays. electrochem. Solid-State Lett. 8, H83 (2005).
3Chen, P-L., Kuo, C-T., Pan, F-M., and Tsai, T-G.: Preparation and phase transformation of highly ordered TiO2 nanodot arrays on sapphire substrates. Appl. Phys. Lett. 84, 3888 (2004).
4Tien, L.C., Sadik, P.W., Norton, D.P., Voss, L.F., Pearton, S.J., Wang, H.T., Kang, B.S., Ren, F., Jun, J., and Lin, J.: Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl. Phys. Lett. 87, 2221061 (2005).
5Jin, G., Liu, J.L., Thomas, S.G., Luo, Y.H., Wang, K.L., and Nguyen, B-Y.: Controlled arrangement of self-organized Ge islands on patterned Si (001) substrates. Appl. Phys. Lett. 75, 2752 (1999).
6Kitajima, T., Liu, B., and Leone, S.R.: Two-dimensional periodic alignment of self-assembled Ge islands on patterned Si(001) . . . surfaces. Appl. Phys. Lett. 80, 497 (2002).
7Mei, X., Kim, D., Ruda, H.E., and Guo, Q.X.: Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks. Appl. Phys. Lett. 81, 361 (2002).
8Masuda, H., Yasui, K., and Nishio, K.: Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaporation mask. Adv. Mater. 12, 1031 (2000).
9Li, A.P., Müller, F., Birner, A., Nielsch, K., and Gösele, U.: Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023 (1998).
10Liang, J., Chik, H., Yin, A., and Xu, J.: Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template. J. Appl. Phys. 91, 2544 (2002).
11Crouse, D., Lo, Y-H., Miller, A.E., and Crouse, M.: Self-ordered pore structure of anodized aluminum on silicon and pattern transfer. Appl. Phys. Lett. 76, 49 (2000).
12Shingubara, S., Okino, O., Murakami, Y., Sakaue, H., and Takahagi, T.: Fabrication of nanohole array on Si using self-organized porous alumina mask. J. Vac. Sci. Technol. B 19, 1901 (2001).
13Iwasaki, T., Motoi, T., and Den, T.: Multiwalled carbon nanotubes growth in anodic alumina nanoholes. Appl. Phys. Lett. 75, 2044 (1999).
14Hu, W., Gong, D., Chen, Z., Yuan, L., Saito, K., Grimes, C.A., and Kichambare, P.: Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate. Appl. Phys. Lett. 79, 3083 (2001).
15Chu, S.Z., Wada, K., Inoue, S., and Todoroki, S.: Formation and microstructures of anodic alumina films from aluminum sputtered on glass substrate. J. Electrochem. Soc. 149, B321 (2002).
16Mozalev, A., Surganov, A., and Magaino, S.: Anodic process for forming nanostructured metal-oxide coatings for large-value precise microfilm resistor fabrication. Electrochim. Acta 44, 3891 (1999).
17Vorobyova, A.I., Sokol, V.A., and Outkina, E.A.: SEM investigation of pillared microstructures formed by electrochemical anodization. Appl. Phys. A: Mater. Sci. Proc. 67, 487 (1998).
18Perriere, J., Rigo, S., and Siejka, J.: Investigation of cation-transport processes during anodic oxidation of duplex layers of tantalum on niobium by the use of rutherford backscattering and nuclear microanalysis. J. Electrochem. Soc. 125, 1549 (1978).
19Perriere, J. and Siejka, J.: Study of the anodization of niobium and tantalum superimposed layers by 18O tracing techniques and nuclear microanalysis. J. Electrochem. Soc. 130, 1267 (1980).
20Mozalev, A., Sakairi, M., Saeki, I., and Takahashi, H.: Structure, morphology, and dielectric properties of nanocomposite oxide films formed by anodizing of sputter-deposited Ta–Al bilayers. J. Electrochem. Soc. 151, F257 (2004).
21Mozalev, A., Sakairi, M., Saeki, I., and Takahashi, H.: Nucleation and growth of the nanostructured anodic oxides on tantalum and niobium under the porous alumina film. Electrochim. Acta 48, 3155 (2003).
22Chu, S.Z., Inoue, S., Wada, K., Hishita, S., and Kurashima, K.: A new electrochemical lithography-fabrication of self-organized titania nanostructures on glass by combined anodization. J. Electrochem. Soc. 152, B116 (2005).
23Chu, S-Z., Inoue, S., Wada, K., Hishita, S., and Kurashima, K.: Self-organized nanoporous anodic titania films and ordered titania nanodots/nanorods on glass. Adv. Funct. Mater. 15, 1343 (2005).
24Chen, P-L., Kuo, C-T., Tsai, T-G., Wu, B-W., Hsu, C-C., and Pan, F-M.: Self-organized titanium oxide nanodot arrays by electrochemical anodization. Appl. Phys. Lett. 82, 2796 (2003).
25Masuda, H. and Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).
26Vorobyova, A.I. and Outkina, E.A.: Study of pillar microstructure formation with anodic oxides. Thin Solid Films 324, 1 (1998).
27Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D., and Chastain, J.: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1992).
28Masuda, Y., Wakamatsu, S., and Koumoto, K.: Site-selective deposition and micropatterning of tantalum oxide thin films using a monolayer. J. Eur. Ceram. Soc. 24, 301 (2004).
29Takahashi, H. and Nagayama, M.: The determination of the porosity of anodic oxide films on aluminium by the pore-filling method. Corros. Sci. 18, 911 (1978).
30Lu, Q., Skeldon, P., Thompson, G.E., Masheder, D., Habazaki, H., and Shimizu, K.: Transport numbers of metal and oxygen species in anodic tantala. Corros. Sci. 46, 2817 (2004).
31Pringle, J.P.S.: The anodic oxidation of superimposed metallic layers: Theory. Electrochim. Acta. 25, 1423 (1980).


Fabrication of ordered Ta2O5 nanodots using an anodic aluminum oxide template on Si substrate

  • Ching-Jung Yang (a1), Chih Chen (a1), Pu-Wei Wu (a1), Jia-Min Shieh (a2), Shun-Min Wang (a1) and Shih-Wei Liang (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed