Skip to main content Accessibility help
×
Home

Fabrication of novel resinous diamond composites with acrylonitrile butadiene styrene/polyvinyl chloride/dioctyl phthalate/diamond by hot pressing molding

  • Fengjun Chen (a1), Huochang Liang (a1), Shaohui Yin (a1), Shuai Huang (a2) and Qingchun Tang (a3)...

Abstract

Uniform distribution of diamond grains is difficult to achieve using traditional fabrication of the micro grinding wheel. The design and performance of novel resinous diamond composites (RDCs) fabricated by hot pressing molding were studied to fabricate micro resinous diamond grinding wheels. The physical and mechanical properties of RDCs were analyzed by constructing and simulating five kinds of RDCs, including acrylonitrile butadiene styrene (ABS)/polyvinyl chloride (PVC)/dioctyl phthalate (DOP)/diamond materials with different mass ratios. Diamond grains presented good compatibility with the ABS–PVC–DOP copolymer, which resulted in improved mechanical properties of RDCs. RDC1–RDC5 samples were fabricated, and their hardness, surface roughness, and infrared spectra were analyzed. The optimal mass ratio of ABS/PVC/diamond/DOP for fabricating RDCs was 62.5/18.6/10.6/8.3. The results provide guidance in fabricating novel materials for resinous diamond grinding wheels with desirable performances for precision and ultraprecision machining.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: shyin2000@126.com

References

Hide All
1.Chen, F.J., Yin, S.H., Huang, H., and Ohmori, H.: Fabrication of small aspheric moulds using single point inclined axis grinding. Precis. Eng. 39, 107 (2015).
2.Chen, F.J., Yin, S.H., Huang, H., Ohmori, H., Wang, Y., Fan, Y.F., and Zhu, Y.J.: Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement. Int. J. Mach. Tool Manuf. 50, 480 (2010).
3.Wu, Y.M., Zhou, S.G., Lu, G.M., and Zhao, W.J.: Waterborne preparation technology and corrosion resistance of epoxy resins. Surf. Technol. 46, 135 (2017).
4.Mohamed, O.A., Masood, S.H., and Bhowmik, J.L.: Experimental investigation of time-dependent mechanical properties of PC-ABS prototypes processed by FDM additive manufacturing process. Mater. Lett. 193, 58 (2017).
5.Sharma, R., Singh, R., Penna, R., and Fraternali, F.: Investigations for mechanical properties of Hap, PVC and PP based 3D porous structures obtained through biocompatible FDM filaments. Composites, Part B 132, 237 (2017).
6.Dunne, R., Desai, D., and Sadiku, R.: Material characterization of blended sisal-kenaf composites with an ABS matrix. Appl. Acoust. 125, 184 (2017).
7.Feng, J., Carpanese, C., and Fina, A.: Thermal decomposition investigation of ABS containing Lewis-acid type metal salts. Polym. Degrad. Stab. 129, 319 (2016).
8.Rojsatean, J., Larpsuriyakul, P., Prakymoramas, N., Thanomjitr, D., Kaewket, S., Singsom, T., and Srinun, D.: Friction characteristics of self-lubricating ABS under different surface roughnesses and temperatures. Tribol. Int. 109, 229 (2017).
9.Khaleghi, M., Didehban, K., and Shabanian, M.: Effect of new melamine-terephthaldehyde resin modified graphene oxide on thermal and mechanical properties of PVC. Polym. Test. 63, 382 (2017).
10.Zhang, K.Z., Zhang, X., Guo, J.B., and He, L.: Mechanism of PVC/ABS alloy heat resistant. Plas 5, 33 (2012).
11.Duan, N., Yu, Y., Wang, W., and Xu, X.P.: SPH and FE coupled 3D simulation of monocrystal SiC scratching by single diamond grit. Int. J. Refract. Met. Hard Mater. 64, 279 (2017).
12.Wang, Y.L., Zhang, M.Y., and Ren, L.: Toughening and modification of PVC resin with ABS graft copolymer. Chi. Plas. Indu. 2, 39 (2014).
13.Ahmed, S., Mehmood, M., and Iqbal, R.: Influence of dioctyl phthalate (DOP) on the mechanical, optical and thermal properties of formulations for the industrial manufacture of radiation sterilizable medical disposables. Radiat. Phys. Chem. 79, 339 (2010).
14.Han, I.S., Lee, Y.K., Lee, H.S., Yoon, H.G., and Kim, W.N.: Effects of multi-walled carbon nanotube (MWCNT) dispersion and compatibilizer on the electrical and rheological properties of polycarbonate/poly(acrylonitrile–butadiene–styrene)/MWCNT composites. J. Mater. Sci. 49, 4522 (2014).
15.Jyoti, J., Babal, A.S., Sharma, S., Dhakate, S.R., and Singh, B.P.: Significant improvement in static and dynamic mechanical properties of graphene oxide–carbon nanotube acrylonitrile butadiene styrene hybrid composites. J. Mater. Sci. 53, 2520 (2018).
16.Kindt, J.T.: Determining bulk equilibrium constants for cluster formation from constant NVT ensemble simulations at small N. Phys. Procedia 53, 63 (2014).
17.Hamilton, N.E., Mahjoub, R., Laws, K.J., and Ferry, M.: A blended NPT/NVT scheme for simulating metallic glasses. Comput. Mater. Sci. 130, 130 (2017).
18.Rigby, D.: Fluid density predictions using the COMPASS force field. Fluid Phase Equilib. 217, 77 (2004).
19.Esrafili, M.D., Asadollahi, S., and Mousavian, P.: Anionic tetrel bonds: An ab initio study. Chem. Phys. Lett. 691, 394 (2017).
20.Greenberg, I. and Shkolnisky, Y.: Common lines modeling for reference free Ab initio reconstruction in cryo-EM. J. Struct. Biol. 200, 106 (2017).
21.Martin, M.G.: Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE, and UFF force fields for prediction of vapor–liquid coexistence curves and liquid densities. Fluid Phase Equilib. 248, 50 (2006).
22.Beckedahl, D., Obaga, E.O., Uken, D.A., Sergi, A., and Ferrario, M.: On the configurational temperature Nosè–Hoover thermostat. Phys. A 461, 19 (2016).
23.Knoll, J. and Nirschl, H.: Influence of the magnetic force on the van der Waals force of superparamagnetic composite particles. Powder Technol. 259, 30 (2014).
24.Chawla, R. and Sharma, S.: Molecular dynamics simulation of carbon nanotube pull-out from polyethylene matrix. Compos. Sci. Technol. 144, 169 (2017).
25.Marcus, Y.: The internal pressure and cohesive energy density of two inorganic liquids: Bromine and carbon disulfide. J. Chem. Thermodyn. 98, 317 (2016).
26.Yin, Q., Zhang, L., Jiang, B., Yin, Q.J., and Du, K.: Effect of water in amorphous polyvinyl formal: Insights from molecular dynamics simulation. J. Mol. Model. 21, 2 (2015).
27.Yang, J.Q., Gong, X.D., and Wang, G.X.: Compatibility and mechanical properties of BAMO–AMMO/DIANP composites: A molecular dynamics simulation. Comput. Mater. Sci. 102, 1 (2015).
28.Hamad, K., Kaseem, M., Deri, F., and Ko, Y.G.: Mechanical properties and compatibility of polylactic acid/polystyrene polymer blend. Mater. Lett. 164, 409 (2016).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed