Skip to main content Accessibility help

Fabrication of nitrogen doped carbon encapsulated ZnO particle and its application in a lithium ion conversion supercapacitor

  • Deyu Qu (a1), Jianfeng Wen (a1), Dong Zheng (a2), Joshua Harris (a2), Dan Liu (a1), Lu Wang (a1), Zhizhong Xie (a1), Haolin Tang (a1), Liang Xiao (a1) and Deyang Qu (a2)...


A new lithium ion hybrid supercapacitor is reported, in which the negative electrode was made from ZnO nano-crystals coated with a nitrogen doped carbon, and a positive electrode composed of activated carbon. The ZnO nano-crystals were highly dispersed in a nitrogen doped carbon matrix through a bio-inspired route. Dopamine, used as the nitrogen and carbon source, self-polymerized and deposited onto the surface of ZnO nano-crystal. After pyrolysis, a nitrogen doped amorphous carbon coated ZnO nano-crystal materials were obtained. The characteristics of the synthesized carbon coated ZnO nano-crystal electrode as well as the electrochemical performance of the hybrid device were investigated. The ZnO nano-crystal structure was preserved in the course of the carbon coating. The lithium ion supercapacitor demonstrated a high capacity and good cycling stability. Such good performance can be attributed to improved conductivity, the prevention of ZnO nano particles from pulverization and the high degree of crystallinity of the ZnO material.


Corresponding author

a) Address all correspondence to these authors. e-mail:
b) e-mail:


Hide All
1. Amatucci, G.G., Badway, F., and Du Pasquier, A.: Novel asymmetric hybrid cells and the use of pseudo-reference electrodes in three electrode cell characterization. In Intercalation Compounds for Battery Materials. ECS Proceedings, Vol. 99, G.-A. Nazri, M. Thackeray, and T. Ohzuku, eds. (The Electrochemical Society, Inc., Pennington, 2000); pp. 344359.
2. Simon, P. and Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845854 (2008).
3. Khomenko, V., Raymundo-Pinero, E., and Beguin, F.: High-energy density graphite/ac capacitor in organic electrolyte. J. Power Sources 177, 643651 (2008).
4. Tang, W., Liu, L.L., Tian, S., Li, L., Yue, Y.B., Wu, Y.P., and Zhu, K.: Aqueous supercapacitors of high energy density based on MoO3 Nanoplates as anode material. Chem. Commun. 47, 1005810060 (2001).
5. Qu, Q.T., Zhu, Y., Gao, X.W., and Wu, Y.P.: Core–shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv. Energy Mater. 2, 950955 (2012).
6. Cericola, D., Novák, P., Wokaun, A., and Kotz, R.: Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of the different possible approaches utilizing activated carbon, Li4Ti5O12 and LiMn2O4 . J. Power Sources 196, 1030510313 (2011).
7. Tang, Z., Tang, C., and Gong, H.: A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv. Funct. Mater. 22, 12721278 (2012).
8. Wang, Q., Wen, Z.H., and Li, J.H.: A hybrid supercapacitor fabricated with a carbon nanotubes cathode and a TiO2–B nanowire anode. Adv. Funct. Mater. 16, 21412146 (2006).
9. Chen, L.F., Huang, Z.H., Liang, H.W., Guan, Q.F., and Yu, S.H.: Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: An asymmetric supercapacitor with high energy and power density. Adv. Mater. 25, 47464752 (2013).
10. Qu, D., Wen, J., Liu, D., Xie, Z., Zhang, X., Zheng, D., Lei, J., Zhong, W., Tang, H., Xiao, L., and Qu, D.: Hydrogen ion supercapacitor: A new hybrid configuration of highly dispersed MnO2 in porous carbon coupled with nitrogen-doped highly ordered mesoporous carbon with enhanced H-Insertion. ACS Appl. Mater. Interfaces 6, 2268722694 (2014).
11. Skompska, M. and Zarębska, K.: Electrodeposition of ZnO nanorod arrays on transparent conducting substrates—A review. Electrochim. Acta 127, 467488 (2014).
12. Sun, Y., Seo, J.H., Takacs, C.J., Seifter, J., and Heeger, A.J.: Inverted polymer solar cells integrated with a low-temperature-annealed sol–gel-derived ZnO film as an electron transport layer. Adv. Mater. 23, 16791683 (2011).
13. He, J.H., Ke, J.J., Chang, P.H., Tsai, K.T., Yang, P.C., and Chan, I.M.: Development of Ohmic nanocontacts via surface modification for nanowire-based electronic and optoelectronic devices: ZnO nanowires as an example. Nanoscale 4, 33993404 (2012).
14. Tian, S., Yang, F., Zeng, D., and Xie, C.: Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J. Phys. Chem. C 116, 1058610591 (2012).
15. Wen, R., Yang, Z., Fan, X., Tan, Z., and Yang, B.: Electrochemical performances of ZnO with different morphology as anodic materials for Ni/Zn secondary batteries. Electrochim. Acta 83, 376382 (2012).
16. Shilpa, S., Basavaraja, B.M., Majumder, S.B., and Sharma, A.: Electrospun hollow glassy carbon-reduced graphene oxide nanofibers with encapsulated ZnO nanoparticles: A free standing anode for Li-ion batteries. J. Mater. Chem. A 3, 53445351 (2015).
17. Xie, Q., Ma, Y., Zeng, D., Zhang, X., Wang, L., Yue, G., and Peng, D.L.: Hierarchical ZnO–Ag–C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries. ACS Appl. Mater. Interfaces 6, 1989519904 (2014).
18. Ren, Z., Wang, Z., Chen, C., Wang, J., Fu, X., Fan, C., and Qian, G.: Preparation of carbon-encapsulated ZnO tetrahedron as an anode material for ultralong cycle life performance lithium-ion batteries. Electrochim. Acta 146, 5259 (2014).
19. Yue, H., Shi, Z., Wang, Q., Cao, Z., Dong, H., Qiao, Y., Yin, Y., and Yang, S.: MOF-derived cobalt-doped ZnO@C composites as a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 1706717074 (2014).
20. Yu, M., Wang, A., Wang, Y., Li, C., and Shi, G.: An alumina stabilized ZnO–graphene anode for lithium ion batteries via atomic layer deposition. Nanoscale 6, 1141911424 (2014).
21. Guo, R., Yue, W., An, Y., Ren, Y., and Yan, X.: Graphene-encapsulated porous carbon–ZnO composites as high-performance anode materials for Li-ion batteries. Electrochim. Acta 135, 161167 (2014).
22. Bai, Z., Zhang, Y., Fan, N., Guo, C., and Tang, B.: One-step synthesis of ZnO@C nanospheres and their enhanced performance for lithium-ion batteries. Mater. Lett. 119, 1619 (2014).
23. Yang, G.Z., Song, H.W., Cui, H., Liu, Y.C., and Wang, C.X.: Ultrafast Li-ion battery anode with superlong life and excellent cycling stability from strongly coupled ZnO nanoparticle/conductive nanocarbon skeleton hybrid materials. Nano Energy 2, 579585 (2013).
24. Xiao, L., Mei, D., Cao, M., Qu, D., and Deng, B.: Effects of structural patterns and degree of crystallinity on the performance of nanostructured ZnO as anode material for lithium-ion batteries. J. Alloys Compd. 627, 455462 (2015).
25. Zhang, G., Hou, S., Zhang, H., Zeng, W., Yan, F., Li, C., and Duan, H.: High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27, 24002405 (2015).
26. Mao, Y., Duan, H., Xu, B., Zhang, L., Hu, Y.S., Zhao, C.C., Wang, Z.X., Chen, L.Q., and Yang, Y.S.: Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 5, 79507955 (2012).
27. Li, X., Zhu, X., Zhu, Y., Yuan, Z., Si, L., and Qian, Y.: Porous nitrogen-doped carbon vegetable-sponges with enhanced lithium storage performance. Carbon 69, 515524 (2014).
28. Zhao, L., Hu, Y.S., Li, H., Wang, Z., and Chen, L.: Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 23, 13851388 (2011).
29. Liu, Y., Ai, K., and Lu, L.: Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114, 50575115 (2014).
30. Tang, H., Xiong, M., Qu, D., Liu, D., Zhang, Z., Xie, Z., Wei, X., Tu, W., and Qu, D.: Enhanced supercapacitive performance on TiO2@C coaxial nano-rod array through a bio-inspired approach. Nano Energy 15, 7582 (2015).
31. Yang, Y.R., Qiu, M., Liu, L., Su, D., Pi, Y.M., and Yan, G.M.: Nitrogen-doped hollow carbon nanospheres derived from dopamine as high-performance anode materials for sodium-ion batteries. Nano 11(11), 1650124 (2016).
32. Cui, X., Chen, X.L., Chen, S.S., Jia, F.L., Yang, S.H., Lin, Z., Shi, Z.Q., and Deng, H.: Dopamine adsorption precursor enables N-doped carbon sheathing of MoS2 nanoflowers for all-around enhancement of supercapacitor performance. J. Alloys Compd. 693, 955963 (2017).
33. Wen, Y.F., Yun, J.H., Luo, B., Lyu, M.Q., and Wang, L.Z.: Tuning the carbon content on TiO2 nanosheets for optimized sodium storage. Electrochim. Acta 219, 163169 (2016).
34. Han, L., Xu, M., Han, Y.J., Yu, Y., and Dong, S.J.: Core–shell-structured tungsten carbide encapsulated within nitrogen-doped carbon spheres for enhanced hydrogen evolution. ChemSusChem 9(19), 27842787 (2016).
35. Wu, L.T., Shen, Y., Yu, L.H., Xi, J.Y., and Qiu, X.P.: Boosting vanadium flow battery performance by nitrogen-doped carbon nanospheres. Electrocatalysis 28, 1928 (2016).
36. Tong, Y., Liu, Y., Dong, L., Zhao, D., Zhang, J., Lu, Y., Shen, D., and Fan, X.: Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J. Phys. Chem. B 110, 2026320267 (2006).
37. Wagner, C.D., Riggs, W.D., Davis, L.E., Moulder, J.F., and Muileuberg, G.E.: Handbook of X-ray Photoelectron Spectroscopy (PerkinElmer Corp., Eden Prairie, 1979).
38. Pels, J.R., Kapteijn, F., Moulijn, J.A., Zhu, Q., and Thomas, K.M.: Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33, 16411653 (1995).
39. Liu, L., Deng, Q.F., Hou, X.X., and Yuan, Z.Y.: User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture. J. Mater. Chem. 22, 1554015548 (2012).
40. Chen, X.Y., Chen, C., Zhang, Z.J., Xie, D.H., Deng, X., and Liu, J.W.: Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J. Power Sources 230, 5058 (2013).
41. Liu, D., Zheng, D., Wang, L., Qu, D., Xie, Z., Lei, J., Guo, L., Deng, B., Xiao, L., and Qu, D.: Enhancement of electrochemical hydrogen insertion in N-doped highly ordered mesoporous carbon. J. Phys. Chem. C 118, 27302734 (2014).


Related content

Powered by UNSILO

Fabrication of nitrogen doped carbon encapsulated ZnO particle and its application in a lithium ion conversion supercapacitor

  • Deyu Qu (a1), Jianfeng Wen (a1), Dong Zheng (a2), Joshua Harris (a2), Dan Liu (a1), Lu Wang (a1), Zhizhong Xie (a1), Haolin Tang (a1), Liang Xiao (a1) and Deyang Qu (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.