Skip to main content Accessibility help

Fabrication of iron carbide by plasma-enhanced atomic layer deposition

  • Xu Tian (a1), Xiangyu Zhang (a1), Yulian Hu (a1), Bowen Liu (a1), Yuxia Yuan (a1), Lizhen Yang (a1), Qiang Chen (a1) and Zhongwei Liu (a1)...


Iron carbide (Fe1−xCx) thin films were successfully grown by plasma-enhanced atomic layer deposition (PEALD) using bis(N,N′-di-tert-butylacetamidinato)iron(II) as a precursor and H2 plasma as a reactant. Smooth and pure Fe1−xCx thin films were obtained by the PEALD process in a layer-by-layer film growth fashion, and the x in the nominal formula of Fe1−xCx is approximately 0.26. For the wide PEALD temperature window from 80 to 210 °C, a saturated film growth rate of 0.04 nm/cycle was achieved. X-ray diffraction and transition electron microscope measurements show that the films grown at deposition temperature 80–170 °C are amorphous; however, at 210 °C, the crystal structure of Fe7C3 is formed. The conformality and resistivity of the deposited films have also been studied. At last, the PEALD Fe1−xCx on carbon cloth shows excellent electrocatalytic performance for hydrogen evolution.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Sánchez-López, J.C., Dominguez-Meister, S., Rojas, T.C., Colasuonno, M., Bazzan, M., and Patelli, A.: Tribological properties of TiC/a-C:H nanocomposite coatings prepared via HiPIMS. Appl. Surf. Sci. 440, 458466 (2018).
2.Martínez-Martínez, D., López-Cartes, C., Fernández, A., and Sánchez-López, J.C.: Influence of the microstructure on the mechanical and tribological behavior of TiC/a-C nanocomposite coatings. Thin Solid Films 517, 16621671 (2009).
3.Voevodin, A.A. and Zabinski, J.S.: Supertough wear-resistant coatings with ‘chameleon’ surface adaptation. Thin Solid Films 370, 223231 (2000).
4.Wang, J., Xu, F., Jin, H., Chen, Y., and Wang, Y.: Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 29, 1605838 (2017).
5.Fan, X., Peng, Z., Ye, R., Zhou, H., and Guo, X.: M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 9, 74077418 (2015).
6.Xiong, W., Guo, Q., Guo, Z., Li, H., Zhao, R., Chen, Q., Liu, Z., and Wang, X.: Atomic layer deposition of nickel carbide for supercapacitors and electrocatalytic hydrogen evolution. J. Mater. Chem. A 6, 42974304 (2018).
7.Yu, J., Yang, C., Li, J., Ding, Y., Zhang, L., Yousaf, M.Z., Lin, J., Pang, R., Wei, L., Xu, L., Sheng, F., Li, C., Li, G., Zhao, L., and Hou, Y.: Multifunctional Fe5C2 nanoparticles: A targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv. Mater. 26, 41144120 (2014).
8.Vitu, T., Polcar, T., Cvrcek, L., Novak, R., Macak, J., Vyskocil, J., and Cavaleiro, A.: Structure and tribology of biocompatible Ti–C:H coatings. Surf. Coat. Technol. 202, 57905793 (2008).
9.Yang, J., Ma, W., Chen, D., Holmen, A., and Davis, B.H.: Fischer–Tropsch synthesis: A review of the effect of CO conversion on methane selectivity. Appl. Catal., A 470, 250260 (2014).
10.Jansson, U. and Lewin, E.: Sputter deposition of transition-metal carbide films—A critical review from a chemical perspective. Thin Solid Films 536, 124 (2013).
11.Hui, L., Chen, Z-Q., Xie, Z., and Li, C.: Stability, magnetism and hardness of iron carbides from first-principles calculations. J. Supercond. Novel Magn. 31, 353364 (2018).
12.Tang, W., Zhen, Z., Yang, C., Wang, L., Cowger, T., Chen, H., Todd, T., Hekmatyar, K., Zhao, Q., Hou, Y., and Xie, J.: Fe5C2 nanoparticles with high MRI contrast enhancement for tumor imaging. Small 10, 12451249 (2014).
13.Morjan, I., Alexandrescu, R., Scarisoreanu, M., Fleaca, C., Dumitrache, F., Soare, I., Popovici, E., Gavrila, L., Vasile, E., Ciupina, V., and Popa, N.C.: Controlled manufacturing of nanoparticles by the laser pyrolysis: Application to cementite iron carbide. Appl. Surf. Sci. 255, 96389642 (2009).
14.Yang, C., Zhao, H., Hou, Y., and Ma, D.: Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 134, 1581415821 (2012).
15.Yang, Z., Zhao, T., Huang, X., Chu, X., Tang, T., Ju, Y., Wang, Q., Hou, Y., and Gao, S.: Modulating the phases of iron carbide nanoparticles: From a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions. Chem. Sci. 8, 473481 (2017).
16.Chaira, D., Mishra, B.K., and Sangal, S.: Efficient synthesis and characterization of iron carbide powder by reaction milling. Powder Technol. 191, 149154 (2009).
17.Jouanny, I., Demange, V., Ghanbaja, J., and Bauer-Grosse, E.: Structural characterization of Fe–C coatings prepared by reactive triode-magnetron sputtering. J. Mater. Res. 25, 18591869 (2011).
18.Krisyuk, V., Gleizes, A.N., Aloui, L., Turgambaeva, A., Sarapata, B., Prud’Homme, N., Senocq, F., Samélor, D., Zielinska-Lipiec, A., de Caro, D., and Vahlas, C.: Chemical vapor deposition of iron, iron carbides, and iron nitride films from amidinate precursors. J. Electrochem. Soc. 157, D454D461 (2010).
19.Mallick, B.C., Hsieh, C-T., Yin, K-M., Gandomi, Y.A., and Huang, K-T.: Review—On atomic layer deposition: Current progress and future challenges. ECS J. Solid State Sci. Technol. 8, N55N78 (2019).
20.Miikkulainen, V., Leskelä, M., Ritala, M., and Puurunen, R.L.: Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 113, 021301 (2013).
21.Guo, Q., Guo, Z., Shi, J., Xiong, W., Zhang, H., Chen, Q., Liu, Z., and Wang, X.: Atomic layer deposition of nickel carbide from a nickel amidinate precursor and hydrogen plasma. ACS Appl. Mater. Interfaces 10, 83848390 (2018).
22.Fan, Q., Guo, Z., Li, Z., Wang, Z., Yang, L., Chen, Q., Liu, Z., and Wang, X.: Atomic layer deposition of cobalt carbide thin films from cobalt amidinate and hydrogen plasma. ACS Appl. Electron. Mater. 1, 444453 (2019).
23.Li, H., Gao, Y., Shao, Y., Su, Y., and Wang, X.: Vapor-phase Atomic layer deposition of Co9S8 and its application for supercapacitors. Nano Lett. 15, 66896695 (2015).
24.Zhao, R., Xiao, S., Yang, S., and Wang, X.: Surface thermolytic behavior of nickel amidinate and its implication on the atomic layer deposition of nickel compounds. Chem. Mater. 31, 51725180 (2019).
25.Zhao, R. and Wang, X.: Initial growth and agglomeration during atomic layer deposition of nickel sulfide. Chem. Mater. 31, 445453 (2019).
26.Guo, Z. and Wang, X.: Atomic layer deposition of the metal pyrites FeS2, CoS2, and NiS2. Angew. Chem., Int. Ed. 57, 58985902 (2018).
27.Xiong, W., Guo, Z., Li, H., Zhao, R., and Wang, X.: Rational bottom-up engineering of electrocatalysts by atomic layer deposition: A case study of FexCo1−xSy-based catalysts for electrochemical hydrogen evolution. ACS Energy Lett. 2, 27782785 (2017).
28.Kerrigan, M.M., Klesko, J.P., Rupich, S.M., Dezelah, C.L., Kanjolia, R.K., Chabal, Y.J., and Winter, C.H.: Substrate selectivity in the low temperature atomic layer deposition of cobalt metal films from bis(1,4-di-tert-butyl-1,3-diazadienyl) cobalt and formic acid. J. Chem. Phys. 146, 8 (2017).
29.Park, J-M., Kim, S., Hwang, J., Han, W.S., Koh, W., Lee, W-J.: Plasma-enhanced atomic layer deposition of nickel thin film using bis(1,4-diisopropyl-1,4-diazabutadiene)nickel. J. Vac. Sci. Technol., A 36, 01A119 (2018).
30.Lim, B.S., Rahtu, A., Park, J-S., and Gordon, R.G.: Synthesis and characterization of volatile, thermally stable, reactive transition metal amidinates. Inorg. Chem. 42, 79517958 (2003).
31.Profijt, H.B., Potts, S.E., van de Sanden, M.C.M., and Kessels, W.M.M.: Plasma-assisted atomic layer deposition: Basics, opportunities, and challenges. J. Vac. Sci. Technol., A 29, 050801 (2011).
32.Zhang, C., Huang, B., Ding, Y., Yan, P., Shao, T., Tarasenko, V.F., and Baksht, E. K.: Effect of cathode and anode materials on the high-energy electron beam in the nanosecond-pulse breakdown in gas-filled diodes. J. Phys. D: Appl. Phys. 52, 275202 (2019).
33.Liu, Z.W., Yang, X.F., Zhu, A.M., Zhao, G.L., and Xu, Y.: Determination of the OH radical in atmospheric pressure dielectric barrier discharge plasmas using near infrared cavity ring-down spectroscopy. Eur. Phys. J. D 48, 365373 (2008).
34.Guo, Z., Li, H., Chen, Q., Sang, L., Yang, L., and Liu, Z., Wang, X.: Low-temperature atomic layer deposition of high purity, smooth, low resistivity copper films by using amidinate precursor and hydrogen plasma. Chem. Mater. 27, 59885996 (2015).
35.Fan, Q., Sang, L., Jiang, D., Yang, L., Zhang, H., Chen, Q., and Liu, Z.: Plasma enhanced atomic layer deposition of cobalt nitride with cobalt amidinate. J. Vac. Sci. Technol., A 37, 010904 (2019).
36.Hu, Y., Tian, X., Fan, Q., Wang, Z., Liu, B., Yang, L., and Liu, Z.: Fabrication and characterization of iron and iron carbide thin films by plasma enhanced pulsed chemical vapor deposition. Plasma Sci. Technol. 21, 105502 (2019).
37.Kim, K., Lee, K., Han, S., Jeong, W., and Jeon, H.: Characteristics of cobalt thin films deposited by remote plasma ALD method with dicobalt octacarbonyl. J. Electrochem. Soc. 154, H177H181 (2007).
38.Moon, D-Y., Han, D-S., Shin, S-Y., Park, J-W., Kim, B.M., and Kim, J.H.: Effects of the substrate temperature on the Cu seed layer formed using atomic layer deposition. Thin Solid Films 519, 36363640 (2011).
39.Furlan, A., Jansson, U., Lu, J., Hultman, L., and Magnuson, M.: Structure and bonding in amorphous iron carbide thin films. J. Phys. Condens. Matter 27 (2015).
40.Kowbel, W. and Shan, C.H.: The mechanism of fiber–matrix interactions in carbon–carbon composites. Carbon 28, 287299 (1990).
41.Bauer-Grosse, E. and Aouni, A.: Glass-forming range and glass thermal stability in binary 3d TM–C systems. J. Non-Cryst. Solids 353, 36443649 (2007).
42.Tajima, S. and Hirano, S.: Synthesis and properties of Fe3C film by r.f. magnetron sputtering. J. Mater. Sci. 28, 27152720 (1993).


Fabrication of iron carbide by plasma-enhanced atomic layer deposition

  • Xu Tian (a1), Xiangyu Zhang (a1), Yulian Hu (a1), Bowen Liu (a1), Yuxia Yuan (a1), Lizhen Yang (a1), Qiang Chen (a1) and Zhongwei Liu (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed