Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T23:54:19.668Z Has data issue: false hasContentIssue false

Fabrication, characterization and chemical modification of anthracene based nanostructures

Published online by Cambridge University Press:  31 January 2011

Alka Gupta
Affiliation:
Department of Chemistry, Dyal Singh College, Delhi University, New Delhi 110003, India
Shubhra Goel
Affiliation:
Department of Chemistry, Dyal Singh College, Delhi University, New Delhi 110003, India
Ranjana Mehrotra*
Affiliation:
Optical Radiation Standards, National Physical Laboratory, New Delhi 110012, India
H.C. Kandpal
Affiliation:
Optical Radiation Standards, National Physical Laboratory, New Delhi 110012, India
*
a)Address all correspondence to this author. e-mail: ranjana@mail.nplindia.ernet.in
Get access

Abstract

Anthracene based nano/microstructures of different sizes and shapes like tubes/fibers are synthesized using a simple open air chemical vapor deposition technique. Thermal solid phase reaction between anthracene 9-carboxylic acid and calcium oxide reported recently [H. Liu et al., J. Am. Chem. Soc.125, 10794 (2003)] is used to obtain organic molecular nanostructures. The products of temperature (320 °C) induced reaction get deposited on the substrates placed inside the reaction chamber as well as on the inner walls in different nano/micrometer forms, tubes/rods/fibers and having different sizes. Structural characterization of the reaction products is performed using optical microscopy, field emission electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Chemical composition studies are conducted using infrared (IR), nuclear magnetic resonance (NMR), and gas chromatography (GC)-Mass spectroscopy, as well as elemental analysis. IR studies of the nanostructures obtained on the substrate using IR spectroscopy reveal the presence of C=O groups, the confirmatory evidence of which is obtained using energy dispersive x-ray spectroscopic (EDS) analysis. Interaction study of the C=O groups with ammonia vapor is conducted and resulting changes are monitored using Fourier transform infrared (FTIR). A strong covalent modification of anthracene based structures by exposure to ammonia molecules is indicated.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Liu, H., Li, Y., Xiao, S., Gan, H., Jiu, T., Li, H., Jiang, L., Zhu, D., Yu, D., Xiang, B.Chen, Y.: Synthesis of organic one-dimensional nanomaterials by solid-phase reaction. J. Am. Chem. Soc. 125, 10794 2003CrossRefGoogle ScholarPubMed
2Sirringhaus, H.: Organic semiconductors: An equal-opportunity conductor. Nat. Mater. 2, 641 2003CrossRefGoogle ScholarPubMed
3Crone, B., Dodabalapur, A., Lin, Y.Y., Filas, R.W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H.E.Li, W.: Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521 2000CrossRefGoogle ScholarPubMed
4Granstrom, M., Petritsch, K., Arias, A.C., Lux, A., Andersson, M.R.Friend, R.H.: Laminated fabrication of polymeric photovoltaic diodes. Nature 395, 257 1998CrossRefGoogle Scholar
5Liu, H., Li, Y., Jiang, L., Luo, H., Xiao, S., Fang, H., Li, H., Zhu, D., Yu, D., Xu, J.Xiang, B.: Imaging as-grown [60] fullerence nanoube by template technique. J. Am. Chem. Soc. 124, 13370 2002CrossRefGoogle Scholar
6Holmes, J.D., Johnston, K.P., Doty, R.C.Kogel, B.A.: Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471 2000CrossRefGoogle ScholarPubMed
7Pan, Z.W., Dai, Z.R.Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947 2001CrossRefGoogle ScholarPubMed
8Nalwa, H.S.: Handbook of Conductive Molecules and Polymer, John Wiley & Sons, New York 1997 4, 529Google Scholar
9Hummer, K., Puschnig, P., Ambrosch-Draxl, C., Oehzelt, M., Heimel, G.Resel, R.: Calculated optical absorption of anthracene under high pressure. Synth. Met. 137, 935 2003CrossRefGoogle Scholar
10Guillon, D.: Columnar order in thermotropic mesophases. Struct. Bond. 95, 41 1999CrossRefGoogle Scholar
11Lisovenko, V.A., Shpak, M.T.Antoniuk, V.G.: Edge dislocations-emission centres in deformed anthracene single crystals. Chem. Phys. Lett. 42, 339 1976CrossRefGoogle Scholar
12Saini, R.K., Chiang, I.W., Peng, H., Smalley, R.E., Billups, W.E., Hauge, R.H.Margrave, J.L.: Covalent sidewall functionalization of single wall carbon nanotubes. J. Am. Chem. Soc. 125, 3617 2003Google Scholar
13Yao, Z., Braidy, N., Botton, G.A.Adronov, A.: Polymerization from the surface of single-walled carbon nanotubes-preparation and characterization of nanocomposites. J. Am. Chem. Soc. 125, 16015 2003CrossRefGoogle ScholarPubMed
14Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S.Dai, H.: Nanotube molecular wires as chemical sensors. Science 287, 622 2000CrossRefGoogle ScholarPubMed
15Gabriel, G., Sauthier, G., Fraxedas, J., Moreno-Manas, M., Martinez, M.T., Miravitles, C.Casabo, J.: Preparation and characterization of single-walled carbon nanotubes functionalised with amines. Carbon 44, 1891 2006CrossRefGoogle Scholar
16Dresselhaus, M.S., Dresselhaus, G.Avouris, Ph.: Carbon Nanotubes: Synthesis, Structure, Properties and Applications Springer Verlag Berlin 2001CrossRefGoogle Scholar
17Socrates, G.: Infrared Characteristic Group Frequencies John Wiley & Sons New York 1994 127Google Scholar
18Shurvell, H.F.: Spectra structure correlations in mid- and far infrared in Handbook of Vibrational Spectroscopy Vol. 3 edited by P.R. Chalmers and J.M. Griffiths John Wiley & Sons New York 2002 1783Google Scholar
19Lewis, I.C.Singer, L.S.: Thermal conversion of polynuclear aromatic compounds to carbon in Polynuclear Aromatic Compounds American Chemical Society Washington, DC 1988 269Google Scholar
20Coffey, S.Van Alphen, J.: Aromatic compounds with three condensed nuclei: Anthracene, phenanthrene and related compounds in Compounds with Condensed Nuclei Elsevier Publishing Co. NY 1956 1355Google Scholar
21Socrates, G.: Infrared Characteristic Group Frequencies John Wiley & Sons New York 1994 66Google Scholar