Skip to main content Accessibility help
×
Home

Fabrication and thermal stability of a nanocrystalline Ni–Al–Cr alloy: Comparison with pure Cu and Ni

  • Keiichiro Oh-ishi (a1), Zenji Horita (a1), David J. Smith (a2), Ruslan Z. Valiev (a3), Minoru Nemoto (a4) and Terence G. Langdon (a5)...

Abstract

A Ni–Al–Cr alloy with an initial grain size of ∼60 μm was subjected to torsion straining to a strain of ∼7 at room temperature, thereby reducing the grain size to ∼34 nm. Similar torsion straining with samples of pure Cu and pure Ni gave grain sizes of ∼170 and ∼130 nm, respectively. Inspection of the Ni–Al–Cr alloy after torsion straining revealed highly strained regions containing dislocations associated with lattice distortions but with an absence of any Ni3Al ordered phase. The ultrafine grains in the Ni–Al–Cr alloy were extremely stable at high temperatures, and it was possible to retain a grain size of less than 100 nm after annealing at temperatures up to ∼900 K. By contrast, there was rapid grain growth in the samples of pure Cu and Ni at annealing temperatures in the vicinity of ∼500 K. The stability of the grains in the Ni–Al–Cr alloy is attributed to the formation of a Ni3Al-based ordered phase after annealing at ∼650–700 K. The presence of this phase also leads to an apparent negative slope in the standard Hall–Petch relationship.

Copyright

References

Hide All
1.Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H. (Risø National Laboratory, Roskilde, Denmark, 1981), p. 15.
2.Sanders, P.G., Fougere, G.E., Thompson, L.J., Eastman, J.A., and Weertman, J.R., Nanostruct. Mater. 8, 243 (1997).
3.Koch, C.C. and Cho, Y.S., Nanostruct. Mater. 1, 207 (1992).
4.Eckert, J., Holzer, J.C., Krill, C.E., and Johnson, W.L., J. Mater. Res. 7, 1751 (1992).
5.Koch, C.C., Nanostruct. Mater. 9, 13 (1997).
6.Rigney, D.A., Annu. Rev. Mater. Sci. 18, 141 (1988).
7.Valiev, R.Z. and Tsenev, N.K., in Hot Deformation of Aluminum Alloys, edited by Langdon, T.G., Merchant, H.D., Morris, J.G., and Zaidi, M.A., (Minerals, Metals, and Materials Society, Warrendale, PA, 1991), p. 319.
8.Valiev, R.Z., Krasilnikov, N.A., and Tsenev, N.K., Mater. Sci. Eng. 137A, 35 (1991).
9.Segal, V.M., Reznikov, V.I., Drobyshevskiy, A.E., and Kopylov, V.I., Russian Metallurgy (Metally) 1, 99 (1981).
10.Smirnova, N.A., Levit, V.I., Pilyugin, V.I., Kuznetsov, R.I., Davydova, L.S., and Sazonova, V.A., Fiz. Metal. Metalloved. 61, 1170 (1986).
11.Horita, Z., Smith, D.J., Furukawa, M., Nemoto, M., Valiev, R.Z., and Langdon, T.G., J. Mater. Res. 11, 1880 (1996).
12.Horita, Z., Smith, D.J., Nemoto, M., Valiev, R.Z., and Langdon, T.G., J. Mater. Res. 13, 446 (1998).
13.Wang, J., Iwahashi, Y., Horita, Z., Furukawa, M., Nemoto, M., Valiev, R.Z., and Langdon, T.G., Acta Mater. 44, 2973 (1996).
14.Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z., and Langdon, T.G., Acta Mater. 45, 4751 (1997).
15.Valiev, R.Z., Salimonenko, D.A., Tsenev, N.K., Berbon, P.B., and Langdon, T.G., Scripta Mater. 37, 1945 (1997).
16.Berbon, P.B., Tsenev, N.K., Valiev, R.Z., Furukawa, M., Horita, Z., Nemoto, M., and Langdon, T.G., Metall. Mater. Trans. 29A, 2237 (1998).
17.Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z., and Langdon, T.G., Phil. Mag. Lett. 78, 313 (1998).
18.Korznikov, A., Dimitrov, O., and Korznikova, G., Ann. Chim. 21, 443 (1996).
19.Senba, H. and Igarashi, M., Mater. Trans. JIM 37, 821 (1996).
20.Senba, H. and Igarashi, M., Proceedings of the Second International Symposium on Structural Intermetallics (ISSI-2), edited by Nathal, M.V. (Minerals, Metals, and Materials Society, Warrendale, PA, 1997), p. 595.
21.Hall, E.O., Proc. Phys. Soc. B64, 747 (1951).
22.Petch, N.J., J. Iron Steel Inst. 174, 25 (1953).
23.Watanabe, M., Horita, Z., and Nemoto, M., Ultramicroscopy 65, 187 (1996).
24.Languillaume, J., Chmelik, F., Kapelski, G., Bordeaux, F., Nazarov, A.A., Canova, G., Esling, C., Valiev, R.Z., and Baudelet, B., Acta Metall. Mater. 41, 2953 (1993).
25.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).
26.Valiev, R.Z., Chmelik, F., Bordeaux, F., Kapelski, G., and Baudelet, B., Scripta Metall. Mater. 27, 855 (1992).
27.Weertman, J.R. and Sanders, P.G., Solid State Phenom. 35–36, 249 (1994).
28.Furukawa, M., Horita, Z., Nemoto, M., Valiev, R.Z., and Langdon, T.G., Philos. Mag. A 78, 203 (1998).
29.Chokshi, A.H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23, 1679 (1989).
30.Nieh, T.G. and Wadsworth, J., Scripta Metall. Mater. 25, 955 (1991).
31.Scattergood, R.O. and Koch, C.C., Scripta Metall. Mater. 27, 1195 (1992).
32.Lian, J. and Baudelet, B., Nanostruct. Mater. 2, 415 (1993).
33.Li, S., Sun, L. and Wang, Z., Nanostruct. Mater. 2, 653 (1993).
34.Weertman, J.R., Mater. Sci. Eng. A166, 161 (1993).
35.Schiøtz, J., Di Tolla, F.D., and Jacobsen, K.W., Nature 391, 561 (1998).

Related content

Powered by UNSILO

Fabrication and thermal stability of a nanocrystalline Ni–Al–Cr alloy: Comparison with pure Cu and Ni

  • Keiichiro Oh-ishi (a1), Zenji Horita (a1), David J. Smith (a2), Ruslan Z. Valiev (a3), Minoru Nemoto (a4) and Terence G. Langdon (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.