Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-02T07:24:55.008Z Has data issue: false hasContentIssue false

Fabrication and properties of organic and metal nanocylinders in nanoporous membranes

Published online by Cambridge University Press:  31 January 2011

L. Piraux*
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
S. Dubois
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
J. L. Duvail
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
A. Radulescu
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
S. Demoustier-Champagne
Affiliation:
Unité de Physique et de Chimie des Hauts Polymères, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
E. Ferain
Affiliation:
Unité de Physique et de Chimie des Hauts Polymères, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
R. Legras
Affiliation:
Unité de Physique et de Chimie des Hauts Polymères, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
*
a) Address all correspondence to this author. e-mail: piraux@pcpm.ucl.ac.be
Get access

Abstract

Chemical and electrochemical techniques were used for generating ensembles of randomly distributed organic and metal nanocylinders into the pores of nuclear track-etched polycarbonate membranes. This so-called “template method” makes it possible to synthesize a variety of materials including metals, ferromagnets, superconductors, semimetals, and conducting polymer and structures such as solid wires, tubules, composite nanostructures, and multilayers. Numerous interesting properties have been identified in relation to the nanoscopic dimensions of the materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ozin, G.A., Adv. Mater. 4, 612 (1992).Google Scholar
2.Martin, C.R., Science 266, 1961 (1994).CrossRefGoogle Scholar
3.Martin, C.R., Chem. Mater. 8, 1739 (1996).CrossRefGoogle Scholar
4.Hulteen, J.C. and Martin, C.R., J. Mater. Chem. 7, 1075 (1997).CrossRefGoogle Scholar
5.Piraux, L., Dubois, S., and Demoustier-Champagne, S., Nucl. Instrum. Meth. B131, 357 (1997).CrossRefGoogle Scholar
6.Whitney, T.M., Jiang, J.S., Searson, P., and Chien, C., Science 261, 1316 (1993).CrossRefGoogle Scholar
7.Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., and Fert, A., Appl. Phys. Lett. 65, 2484 (1994).CrossRefGoogle Scholar
8.Chou, S.Y., Krauss, P.R., and Renstrom, P.J., Science 272, 85 (1996).CrossRefGoogle Scholar
9.Chou, S.Y., Proc. IEEE 85, 652 (1997).CrossRefGoogle Scholar
10.Ferain, E. and Legras, R., Nucl. Instrum. Meth. B131, 97 (1997).CrossRefGoogle Scholar
11. Patent pending.Google Scholar
12.Zhang, Z., Ying, J.Y., and Dresselhaus, M.S., J. Mater. Res. 13, 1745 (1998).CrossRefGoogle Scholar
13.Zhang, Z., Sun, X., Dresselhaus, M.S., Ying, J.Y., and Heremans, J.P., Appl. Phys. Lett. 73, 1589 (1998).CrossRefGoogle Scholar
14.Liu, K., Chien, C.L., Searson, P.C., and K. Yu-Zhang, Appl. Phys. Lett. 73, 1436 (1998).CrossRefGoogle Scholar
15.Liu, K., Chien, C.L., and Searson, P.C., Phys. Rev. B 58, 14681 (1998).CrossRefGoogle Scholar
16.Piraux, L. and Lecuire, J.M., unpublished.Google Scholar
17.Grozaw, A.D. and Leporda, N.I., Phys. Solid State 38, 1063 (1996).Google Scholar
18.Dubois, S., Marchal, C., Beuken, J.M., Piraux, L., Duvail, J.L., Fert, A., George, J.M., and Maurice, J.L., Appl. Phys. Lett. 70, 396 (1997).CrossRefGoogle Scholar
19.Maurice, J.L., Imhoff, D., Etienne, P., Durand, O., Dubois, S., Piraux, L., George, J.M., Galtier, P., and Fert, A., J. Magn. Magn. Mater. 184, 1 (1998).CrossRefGoogle Scholar
20.Valet, T. and Fert, A., Phys. Rev. B 48, 7099 (1993).CrossRefGoogle Scholar
21.Sakurai, J., Horie, M., Araki, S., Yamamoto, H., and Shinjo, T., J. Phys. Soc. Jpn. 60, 2522 (1991).CrossRefGoogle Scholar
22.Piraux, L., Fert, A., Schroeder, P.A., Loloee, R., and Etienne, P., J. Magn. Magn. Mater. 110, L247 (1992).CrossRefGoogle Scholar
23.Jiang, J.S., Davidovic, D., Reich, D.H., and Chien, C.L., Phys. Rev. B 54, 6119 (1996).CrossRefGoogle Scholar
24.Dubois, S., Michel, A., Eymery, J.P., Duvail, J.L., and Piraux, L., J. Mater. Res. 14, 665 (1999).CrossRefGoogle Scholar
25.Giroud, M., Courtois, H., Mailly, D., and Pannetier, B., Phys. Rev. B 58, 18 (1998).CrossRefGoogle Scholar
26.Garif'yanov, N.N., Goryunov, Yu.V., Mühge, Th., Lazar, L., Khaliullin, G.G., Westerholt, K., Garifullin, I.A., and Zabel, H., Eur. Phys. J. B 1, 405 (1998).CrossRefGoogle Scholar
27.Demoustier-Champagne, S. and Legras, R., J. Chim. Phys. 95, 1200 (1998).CrossRefGoogle Scholar
28.Demoustier-Champagne, S., Ferain, E., Legras, R., Jérôme, C. and Jérôme, R., Eur. Polym. J. 34, 1767 (1998).CrossRefGoogle Scholar
29.Demoustier-Champagne, S. and Stavaux, P-Y., Chem. Mater. 11, 829 (1999).CrossRefGoogle Scholar
30.Duchet, J., Legras, R., and Demoustier-Champagne, S., Synth. Met. 98, 113 (1998).CrossRefGoogle Scholar