Skip to main content Accessibility help
×
Home

Fabrication and mechanical properties of CNT/Al composites via shift-speed ball milling and hot-rolling

  • Chao Yuan (a1), Zhanqiu Tan (a1), Genlian Fan (a1), Mingliang Chen (a2), Quan Zheng (a2) and Zhiqiang Li (a1)...

Abstract

Flat products of carbon nanotubes (CNTs) reinforced Al matrix composites were fabricated using flake powder metallurgy via shift-speed ball milling and hot-rolling. The evolution of CNTs during preparation and the final distribution in the Al matrix were investigated, and the effect of CNT content on mechanical properties were discussed. Due to the combined effect of uniform dispersion of CNTs, structural integrity, interfacial bonding and directional alignment, the balance between high strength and ductility was successfully achieved in the annealed rolled composites with 1.5 wt% CNT addition, with the value of 382.6 MPa in tensile strength and 9.8% in fracture ductility. The load transfer strengthening was the main mechanism of the strength enhancement with CNTs addition. In addition, a strong rotated cube {001}〈110〉 texture was found in the final flat product of rolled composites. This study provides an effective route to produce and improve the mechanical properties of CNT/Al flat products.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: tanzhanqiu@sjtu.edu.cn

References

Hide All
1.Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng., R 74, 281 (2013).
2.Baig, Z., Mamat, O., and Mustapha, M.: Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites: A review. Crit. Rev. Solid State Mater. Sci. 43, 1 (2018).
3.Esawi, A.M.K., Morsi, K., Sayed, A., Gawad, A.A., and Borah, P.: Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater. Sci. Eng., A 508, 167 (2009).
4.Choi, H.J., Shin, J.H., and Bae, D.H.: The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites. Composites, Part A 43, 1061 (2012).
5.Liu, Z-Y., Xu, S., Xiao, B-L., Xue, P., Wang, W-G., and Ma, Z-Y.: Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Composites, Part A 43, 2161 (2012).
6.Asgharzadeh, H., Joo, S.H., and Kim, H.S.: Consolidation of carbon nanotube reinforced aluminum matrix composites by high-pressure torsion. Metall. Mater. Trans. A 45, 4129 (2014).
7.Salimi, S., Izadi, H., and Gerlich, A.: Fabrication of an aluminum–carbon nanotube metal matrix composite by accumulative roll-bonding. J. Mater. Sci. 46, 409 (2011).
8.Liu, Z-Y., Xiao, B-L., Wang, W-G., and Ma, Z-Y.: Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50, 1843 (2012).
9.Wu, Y. and Kim, G-Y.: Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing. J. Mater. Process. Technol. 211, 1341 (2011).
10.Mansoor, M. and Shahid, M.: Carbon nanotube-reinforced aluminum composite produced by induction melting. J. Appl. Res. Technol. 14, 215 (2016).
11.He, C., Zhao, N., Shi, C., Liu, E., and Li, J.: Fabrication of nanocarbon composites using in situ chemical vapor deposition and their applications. Adv. Mater. 27, 5422 (2015).
12.Yang, X., Zou, T., Shi, C., Liu, E., He, C., and Zhao, N.: Effect of carbon nanotube (CNT) content on the properties of in situ synthesis CNT reinforced Al composites. Mater. Sci. Eng., A 660, 11 (2016).
13.Jiang, L., Li, Z-Q., Fan, G-L., Cao, L-L., and Zhang, D.: The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50, 1993 (2012).
14.Kwon, H., Estili, M., Takagi, K., Miyazaki, T., and Kawasaki, A.: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47, 570 (2009).
15.Jiang, L., Li, Z-Q., Fan, G-L., Cao, L-L., and Zhang, D.: Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scr. Mater. 66, 331 (2012).
16.Fan, G-L., Jiang, Y., Tan, Z-Q., Guo, Q., Xiong, D-B., Su, Y-S., Lin, R., Hu, L., Li, Z-Q., and Zhang, D.: Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy. Carbon 130, 333 (2018).
17.Xu, R., Tan, Z-Q., Xiong, D-B., Fan, G-L., Guo, Q., Zhang, J., Su, Y-S., Li, Z-Q., and Zhang, D.: Balanced strength and ductility in CNT/A1 composites achieved by flake powder metallurgy via shift-speed ball milling. Composites, Part A 96, 57 (2017).
18.Guo, B., Ni, S., Yi, J., Shen, R., Tang, Z., Du, Y., and Song, M.: Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot rolling. Mater. Sci. Eng., A 698, 282 (2017).
19.Choi, H.J., Shin, J.H., and Bae, D.H.: Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes. Compos. Sci. Technol. 71, 1699 (2011).
20.Liu, Z-Y., Xiao, B-L., Wang, W-G., and Ma, Z-Y.: Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon 62, 35 (2013).
21.Zhang, L., Wang, Y., Yang, X., Li, K., Ni, S., Du, Y., and Song, M.: Texture, microstructure and mechanical properties of 6111 aluminum alloy subject to rolling deformation. Mater. Res. 20, 1360 (2017).
22.Chen, B., Li, S., Imai, H., Lei, J., Umeda, J., Takahashi, M., and Kondoh, K.: An approach for homogeneous carbon nanotube dispersion in Al matrix composites. Mater. Des. 72, 1 (2015).
23.Choi, H., Shin, J., Min, B., Park, J., and Bae, D.: Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J. Mater. Res. 24, 2610 (2009).
24.Chen, B., Jia, L., Li, S., Imai, H., Takahashi, M., and Kondoh, K.: In Situ synthesized Al4C3 nanorods with excellent strengthening effect in aluminum matrix composites. Adv. Eng. Mater. 16, 972 (2014).
25.Williamson, G.K. and Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953).
26.Guo, B., Zhang, X., Cen, X., Chen, B., Wang, X., Song, M., Ni, S., Yi, J., Shen, T., and Du, Y.: Enhanced mechanical properties of aluminum based composites reinforced by chemically oxidized carbon nanotubes. Carbon 139, 459 (2018).
27.Liao, J.Z., Tan, M.J., and Sridhar, I.: Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater. Des. 31, S96 (2010).
28.Bradbury, C.R., Gomon, J.K., Kollo, L., Kwon, H., and Leparoux, M.: Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites. J. Alloys Compd. 585, 362 (2014).
29.Hassan, M.T., Esawi, A.M., and Metwalli, S.: Effect of carbon nanotube damage on the mechanical properties of aluminium–carbon nanotube composites. J. Alloys Compd. 607, 215 (2014).
30.Liu, Z-Y., Xiao, B-L., Wang, W-G., and Ma, Z-Y.: Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J. Mater. Sci. Technol. 30, 649 (2014).
31.Chen, B., Kondoh, K., Imai, H., Umeda, J., and Takahashi, M.: Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions. Scr. Mater. 113, 158 (2016).
32.Zhou, W., Yamaguchi, T., Kikuchi, K., Nomura, N., and Kawasaki, A.: Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater. 125, 369 (2017).
33.Esawi, A. and Morsi, K.: Dispersion of carbon nanotubes (CNTs) in aluminum powder. Composites, Part A 38, 646 (2007).
34.Yoo, S., Han, S., and Kim, W.: A combination of ball milling and high-ratio differential speed rolling for synthesizing carbon nanotube/copper composites. Carbon 61, 487 (2013).
35.Ryu, H.J., Cha, S.I., and Hong, S.H.: Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites. J. Mater. Res. 18, 2851 (2003).
36.Jamaati, R., Toroghinejad, M.R., Hoseini, M., and Szpunar, J.A.: Development of texture during ARB in metal matrix composite. Mater. Sci. Technol. 28, 406 (2012).
37.Eddahbi, M., Carsı, M., and Ruano, O.A.: Characterization of a thermomechanically processed powder metallurgy Al–5wt% Mg–1.2 wt% Cr alloy. Mater. Sci. Eng., A 361, 36 (2003).
38.Choi, H.J., Kwon, G.B., Lee, G.Y., and Bae, D.H.: Reinforcement with carbon nanotubes in aluminum matrix composites. Scr. Mater. 59, 360 (2008).
39.Hansen, N.: Hall–Petch relation and boundary strengthening. Scr. Mater. 51, 801 (2004).
40.Lee, N., Chen, J., Kao, P., Chang, L., Tseng, T., and Su, J.: Anisotropic tensile ductility of cold-rolled and annealed aluminum alloy sheet and the beneficial effect of post-anneal rolling. Scr. Mater. 60, 340 (2009).
41.Wei, H., Li, Z-Q., Xiong, D-B., Tan, Z-Q., Fan, G-L., Qin, Z., and Zhang, D.: Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design. Scr. Mater. 75, 30 (2014).

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Yuan et al. supplementary material
Yuan et al. supplementary material 1

 Unknown (5.6 MB)
5.6 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed