Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T01:12:15.142Z Has data issue: false hasContentIssue false

Fabrication and magnetic properties of ordered Co100−xPbx nanowire arrays electrodeposited in AAO templates: Effects of annealing temperature and frequency

Published online by Cambridge University Press:  07 March 2017

Mojgan Najafi*
Affiliation:
Department of Materials Engineering, Hamedan University of Technology (HUT), Hamedan 65169-13733, Iran
Pezhman Amjadi
Affiliation:
Department of Physics, University of Kurdistan, Sanandaj 66177-15175, Iran
Zahra Alemipour
Affiliation:
Department of Physics, University of Kurdistan, Sanandaj 66177-15175, Iran
*
a)Address all correspondence to this author. e-mail: najafi@hut.ac.ir, mojgannajafi1@gmail.com
Get access

Abstract

CoxPb1−x nanowire arrays within an anodic aluminum oxide (AAO) template were electrodeposited from an appropriate acetate bath by applying alternating current (ac). The effect of the Pb content on magnetic properties of nanowire arrays was investigated. By adding Pb2+ to an electrolyte containing Co2+, the coercivity field of nanowires decreased from 1508 Oe in Co100 to 921 Oe in Co92.5Pb7.5 while squareness increased from 0.74 for Co nanowires to about 0.82 for Co92.5Pb7.5 nanowire alloy sample. The effect of annealing on the magnetic properties of nanowires in the temperature range between 300 °C and 600 °C was also investigated. It was observed that the coercivity field of Co97.5Pb2.5 nanowire increases from 1290 Oe at room temperature to 1785 Oe at 600 °C. Furthermore, the effect of electrodeposition frequency on the magnetic properties of Co97.5Pb2.5 nanowires was studied. The coercivity was enhanced with increasing frequency; however, after annealing all samples exhibited enhanced coercivity regardless of the electrodeposition frequency.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Amit Goyal

References

REFERENCES

Tonucci, R.J., Justus, B.L., Campillo, A.J., and Ford, C.E.: Nanochannel array glass. Science 258, 783 (1992).CrossRefGoogle ScholarPubMed
Whitney, T.W., Jiang, J.S., Searson, P.C., and Chien, C.L.: Fabrication and magnetic properties of arrays of metallic nanowires. Science 261, 1316 (1993).CrossRefGoogle ScholarPubMed
Martin, C.R.: Nanomaterials: A membrane-based synthetic approach. Science 266, 1961 (1994).CrossRefGoogle ScholarPubMed
Jaleh, B., Omidvar-Dezfuli, A., Jaberian-Hamedan, V., Najafi, M., and Tamari, E.: The electrostatic potential at the center of associative magic squares. Int. J. Phys. Sci. 6, 4775 (2011).Google Scholar
Najafi, M., Soltanian, S., Danyali, H., Hallaj, R., Salimi, A., Elahi, S.M., and Servati, P.: Preparation of cobalt nanowires in porous aluminum oxide: Study of the effect of barrier layer. J. Mater. Res. 27, 2382 (2012).CrossRefGoogle Scholar
Koohbor, M., Soltanian, S., Najafi, M., and Servati, P.: Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process. Mater. Chem. Phys. 131, 728 (2012).CrossRefGoogle Scholar
Najafi, M., Assari, P., Rafati, A.A., and Hamehvaisy, M.: Effect of the electrodeposition frequency, wave form, and thermal annealing on magnetic properties of [Co0.975Cr0.025]0.99Cu0.01 nanowire arrays. J. Supercond. Novel Magn. 27, 2821 (2014).CrossRefGoogle Scholar
Najafi, M., Rafati, A.A., Khorshidi Fart, M., and Zare, A.: Effect of the pH and electrodeposition frequency on magnetic properties of binary Co1−x Sn x nanowire arrays. J. Mater. Res. 29, 190 (2014).CrossRefGoogle Scholar
Najafi, M., Alemipour, Z., Hasanzadeh, I., Aftabi, A., and Soltanian, S.: Influence of annealing temperature, electrolyte concentration and electrodeposition conditions on magnetic properties of electrodeposited Co–Cr alloy nanowires. J. Supercond. Novel Magn. 28, 95 (2015).CrossRefGoogle Scholar
Hamidi, S.M., Sobhani, A., Aftabi, A., and Najafi, M.: Optical and magneto-optical properties of aligned Ni nanowires embedded in polydimethylsiloxane. J. Magn. Magn. Mater. 374, 139 (2015).CrossRefGoogle Scholar
Moon, H., Nam, C., Kim, C., Kim, B., and Lee, G.: Fabrication and characterization of iron–cobalt alloy magnetic nanocluster wires by thermal decomposition method in magnetic fields. Mater. Res. Soc. Symp. Proc. 776, 119 (2003).CrossRefGoogle Scholar
Sharma, G. and Grimes, C.A.: Synthesis, characterization, and magnetic properties of FeCoNi ternary alloy nanowire arrays. J. Mater. Res. 19, 3695 (2004).CrossRefGoogle Scholar
Bhargava, Y.V., Thorne, S.A., Mintz, T.S., Cohen Hyams, T., Radmilovic, V., Suzuki, Y., and Devine, T.M.: Synthesis of magnetic self-assembled nickel-rich oxide nanowires using a novel electrochemical process. Mater. Res. Soc. Symp. Proc. 877, 140 (2005).CrossRefGoogle Scholar
Ahmad, N., Chen, J.Y., Zhou, W.P., Liu, D.P., and Han, X.F.: Magnetoelastic anisotropy induced effects on field and temperature dependent magnetization reversal of Ni nanowires and nanotubes. J. Supercond. Novel Magn. 24, 785 (2011).CrossRefGoogle Scholar
Zhang, X.Y., Wen, G.H., Chan, Y.F., Zheng, R.K., Zhang, X.X., and Wang, N.: Fabrication and magnetic properties of ultrathin Fe nanowire arrays. Appl. Phys. Lett. 83, 3341 (2003).CrossRefGoogle Scholar
Jaleh, B., Koosha, F., and Omidvar Dezfuli, A.: Preparation and magnetic properties of Ni/Pd multilayer nanowire arrays. J. Supercond. Novel Magn. 27, 1065 (2014).CrossRefGoogle Scholar
Bao, J.C., Xu, Z., Hong, J.M., Ma, X., and Lu, Z.H.: Fabrication of cobalt nanostructures with different shapes in alumina template. Scr. Mater. 50, 19 (2004).CrossRefGoogle Scholar
Tabasum, M.R., Zighem, F., De La Torre Medina, J., Piraux, L., and Nysten, B.: Intrinsic switching field distribution of arrays of Ni80Fe20 nanowires probed by in situ magnetic force microscopy. J. Supercond. Novel Magn. 26, 1375 (2013).CrossRefGoogle Scholar
Melle, S., Menendez, J.L., Armelles, G., Navas, D., Vazquez, M., Nielsch, K., Wehrspohnb, R.B., and Gosele, U.: Magneto-optical properties of nickel nanowire arrays. Appl. Phys. Lett. 83, 4547 (2003).CrossRefGoogle Scholar
Vlad, L., Sandu, A.V., and Georgescu, V.: The Effects of the thermal treatment on the structural and magnetic properties of Zn–Co alloys prepared by electrochemical deposition. J. Supercond. Novel Magn. 25, 469 (2012).CrossRefGoogle Scholar
García, J., Prida, V.M., Vivas, L.G., Hernando, B., Barriga-Castro, E.D., Mendoza-Reséndez, R., Luna, C., Escrig, J., and Vázquez, M.: Magnetization reversal dependence on effective magnetic anisotropy in electroplated Co–Cu nanowire arrays. J. Mater. Chem. C 3, 4688 (2015).CrossRefGoogle Scholar
Fei, X.L., Tang, S.L., Wang, R.L., Su, H.L., and Du, Y.W.: Fabrication and magnetic properties of Fe–Pd nanowire arrays. Solid State Commun. 141, 25 (2007).CrossRefGoogle Scholar
Gao, T.R., Yin, L.F., Tian, C.S., Lub, M., Sang, H., and Zhou, S.M.: Magnetic properties of CoPt alloy nanowire arrays in anodic alumina templates. J. Magn. Magn. Mater. 300, 471 (2006).CrossRefGoogle Scholar
Teng, X., Feygenson, M., Wang, Q., He, J., Du, W., Frenkel, A.I., Han, W., and Aronson, M.: Electronic and magnetic properties of ultrathin Au/Pt nanowires. Nano Lett. 9, 3177 (2009).CrossRefGoogle ScholarPubMed
Ji, G.B., Tang, S.L., Gu, B.X., and Du, Y.W.: Ordered Co48Pb52 nanowire arrays electrodeposited in the porous anodic alumina oxide template with enhanced coercivity. J. Phys. Chem. B 108, 8862 (2004).CrossRefGoogle Scholar
Reyes, D., Biziere, N., Warot-Fonrose, B., Wade, T., and Gatel, C.: Magnetic configurations in Co/Cu multilayered nanowires: Evidence of structural and magnetic interplay. Nano Lett. 16, 1230 (2016).CrossRefGoogle ScholarPubMed
Wang, Y.W., Zhang, L.D., Meng, G.W., Peng, X.S., Jin, Y.X., and Zhang, J.: Fabrication of ordered ferromagnetic–nonmagnetic alloy nanowire arrays and their magnetic property dependence on annealing temperature. J. Phys. Chem. B 106, 2502 (2002).CrossRefGoogle Scholar
Ji, G.B., Chen, W., Tang, S.L., Gu, B.X., Li, Z., and Du, Y.W.: Fabrication and magnetic properties of ordered 20 nm Co–Pb nanowire arrays. Solid State Commun. 130, 541 (2004).CrossRefGoogle Scholar
Ji, G.B., Tang, S.L., Che, W., Gu, B.X., and Du, Y.W.: Structure and magnetic properties of Co x Pb1−x nanowire arrays. Solid State Commun. 132, 289 (2004).CrossRefGoogle Scholar
Neuróhr, K., Dégi, J., Pogány, L., Bakonyi, I., Ungvári, D., Vad, K., Hakl, J., Révész, A., and Péter, L.: Composition, morphology and electrical transport properties of Co–Pb electrodeposits. J. Alloys Compd. 545, 111 (2012).CrossRefGoogle Scholar
Kumar, S. and Saini, D.: Large-scale synthesis of Au–Ni alloy nanowires using electrochemical deposition. Appl. Nanosci. 3, 101 (2013).CrossRefGoogle Scholar
Liu, L.F., Xie, S.S., and Zhou, W.Y.: From Co/Pt multilayered nanowires to Co–Pt alloy nanowires: Structural and magnetic evolutions with annealing temperatures. J. Phys. D: Appl. Phys. 42, 205002 (2009).CrossRefGoogle Scholar
Maaz, K., Karim, S., Usman, M., Mumtaz, A., Liu, J., Duan, J.L., and Maqbool, M.: Effect of crystallographic texture on magnetic characteristics of cobalt nanowires. Nanoscale Res. Lett. 5, 1111 (2010).CrossRefGoogle ScholarPubMed
Yin, A.J., Li, J., Jian, W., Bennett, A.J., and Xu, J.M.: Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl. Phys. Lett. 79, 1039 (2001).CrossRefGoogle Scholar
Ramazani, A., Almasi Kashi, M., Alikhani, M., and Erfanifam, S.: Optimized microstructure and magnetic properties in arrays of ac electrodeposited Co nanowires induced by the continuous and pulse electrodeposition. J. Phys. D: Appl. Phys. 40, 5533 (2007).CrossRefGoogle Scholar