Skip to main content Accessibility help

Exploring the electronic, mechanical, and anisotropy properties of novel tetragonal B2CO phase

  • Mingwei Chen (a1), Chao Liu (a2), Meiling Liu (a1), Uppalapati Pramod Kumar (a1), Zihe Li (a3), Lingyu Liu (a4), Julong He (a3) and Tongxiang Liang (a1)...


A novel tetragonal B2CO structure (tP16-B2CO), formed by strong covalent sp2sp3 B–C and B–O bonds, was predicted with aid of an unbiased structure searching method. With the energy lower than those of previously proposed candidates, except oI16-B2CO, tP16-B2CO was identified as the thermodynamic metastable phase for B2CO compound. The elastic matrix and phonon dispersion spectra declare that tP16-B2CO is mechanically and dynamically stable. The electronic band structure calculation at ambient pressure and a series of high pressure has manifested the indirect semiconducting and band gap increases first and then decreases with pressure increases. The calculation of mechanical properties such as hardness and stress–strain relations of tP16 structure revealed its common hard nature with high hardness of 23.19 GPa and anisotropy with the max stress along [001] is far higher than that along [100].


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Tian, Y., Xu, B., and Zhao, Z.: Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 33, 93 (2012).
2.Garvie, L.A.J., Hubert, H., Petuskey, W.T., McMillan, P.F., and Buseck, P.R.: High-pressure, high-temperature syntheses in the B–C–N–O system. J. Solid State Chem. 133, 365 (1997).
3.Hubert, H., Garvie, L.A., Devouard, B., and McMillan, P.F.: High-pressure, high-temperature syntheses of super-hard α-Rhombohedral boron-rich solids in the BCNO. MRS Proc., 315 (Cambridge, UK, 1997).
4.Bolotina, N., Dyuzheva, T., and Bendeliani, N.: Atomic structure of boron suboxycarbide B(C,O)0.155. Crystallogr. Rep. 46, 734 (2001).
5.Li, Q., Chen, W.J., Xia, Y., Liu, Y.H., Wang, H.B., Wang, H., and Ma, Y.M.: Superhard phases of B2O: An isoelectronic compound of diamond. Diamond Relat. Mater. 20, 501 (2011).
6.Li, Y., Li, Q., and Ma, Y.: B2CO: A potential superhard material in the B–C–O system. Europhys. Lett. 95, 66006 (2011).
7.Qiao, L., Jin, Z., Yan, G., Li, P., Hang, L., and Li, L.: Density-functional-studying of oP8-, tI16-, and tP4-B2CO physical properties under pressure. J. Solid State Chem. 270, 642 (2019).
8.Liu, C., Zhao, Z., Luo, K., Hu, M., Ma, M., and He, J.: Superhard orthorhombic phase of B2CO compound. Diamond Relat. Mater. 73, 87 (2017).
9.Zhang, M., Yan, H., Zheng, B., and Wei, Q.: Influences of carbon concentration on crystal structures and ideal strengths of B2CXO compounds in the B–C–O system. Sci. Rep. 5, 15481 (2015).
10.Liu, C., Chen, M., He, J., Yu, S., and Liang, T.: Superhard B2CO phases derived from carbon allotropes. RSC Adv. 7, 52192 (2017).
11.Yan, H., Zhang, M., Wei, Q., and Zhang, Y.: A new orthorhombic ground-state phase and mechanical strengths of ternary B2CO compound. Chem. Phys. Lett. 701, 86 (2018).
12.Wang, S., Oganov, A.R., Qian, G., Zhu, Q., Dong, H., Dong, X., and Davari Esfahani, M.M.: Novel superhard B–C–O phases predicted from first principles. Phys. Chem. Chem. Phys. 18, 1859 (2016).
13.Qiao, L. and Jin, Z.: Two B–C–O compounds: Structural, mechanical anisotropy and electronic properties under pressure. Materials 10, 1413 (2017).
14.Zhou, S. and Zhao, J.: Two-dimensional B–C–O alloys: A promising class of 2D materials for electronic devices. Nanoscale 8, 8910 (2016).
15.Liu, C., Chen, M., Yang, Y., Li, J., Shao, C., Li, P., Liu, L., He, J., and Liang, T.: Theoretical exploring the mechanical and electrical properties of tI12-B6C4O2. Comput. Mater. Sci. 150, 259 (2018).
16.Nuruzzaman, M., Alam, M.A., Shah, M.A.H., Parvin, F., and Zilani, M.A.K.: Investigation of thermodynamic stability, mechanical and electronic properties of superhard tetragonal B4CO4 compound: Ab initio calculations. Comput. Condens. Matter 12, 1 (2017).
17.Zheng, B., Zhang, M., and Wang, C.: Exploring the mechanical anisotropy and ideal strengths of tetragonal B4CO4. Materials 10, 128 (2017).
18.Mouhat, F. and Coudert, F.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104 (2014).
19.Garza, A.J. and Scuseria, G.E.: Predicting band gaps with hybrid density functionals. J. Phys. Chem. Lett. 7, 4165 (2016).
20.Krukau, A.V., Vydrov, O.A., Izmaylov, A.F., and Scuseria, G.E.: Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).
21.Dias, R.P. and Silvera, I.F.: Observation of the Wigner–Huntington transition to metallic hydrogen. Science 355, 715 (2017).
22.Ma, Y., Eremets, M., Oganov, A.R., Xie, Y., Trojan, I., Medvedev, S., Lyakhov, A.O., Valle, M., and Prakapenka, V.: Transparent dense sodium. Nature 458, 182 (2009).
23.Wu, Z., Zhao, E., Xiang, H., Hao, X., Liu, X., and Meng, J.: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 054115 (2007).
24.Korozlu, N., Colakoglu, K., Deligoz, E., and Aydin, S.: The elastic and mechanical properties of MB12 (M = Zr, Hf, Y, Lu) as a function of pressure. J. Alloys Compd. 546, 157 (2013).
25.Ranganathan, S.I. and Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008).
26.Ainsworth, R.I., Tommaso, D.D., and de Leeuw, N.H.: A density functional theory study of structural, mechanical and electronic properties of crystalline phosphorus pentoxide. J. Chem. Phys. 135, 234513 (2011).
27.Bohinc, R., Žitnik, M., Bučar, K., Kavčič, M., Carniato, S., Journel, L., Guillemin, R., Marchenko, T., Kawerk, E., Simon, M., and Cao, W.: Structural and dynamical properties of chlorinated hydrocarbons studied with resonant inelastic X-ray scattering. J. Chem. Phys. 144, 134309 (2016).
28.Needs, R.J. and Pickard, C.J.: Perspective: Role of structure prediction in materials discovery and design. APL Mater. 4, 053210 (2016).
29.Lyakhov, A.O., Oganov, A.R., Stokes, H.T., and Zhu, Q.: New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 184, 1172 (2013).
30.Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005).
31.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
32.Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).
33.Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
34.Montanari, B. and Harrison, N.: Lattice dynamics of TiO2 rutile: Influence of gradient corrections in density functional calculations. Chem. Phys. Lett. 364, 528 (2002).
35.Setyawan, W. and Curtarolo, S.: High-throughput electronic band structure calculations: Challenges and tools. Comput. Mater. Sci. 49, 299 (2010).
36.Lin, J., Qteish, A., Payne, M., and Heine, V.: Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys. Rev. B 47, 4174 (1993).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed