Skip to main content Accessibility help
×
Home

Experimental investigation on effects of varying volume fractions of SiC nanoparticle reinforcement on microstructure and mechanical properties in friction-stir-welded dissimilar joints of AA2024-T351 and AA7075-T651

  • Karinanjanapura Shivamurthy Anil Kumar (a1), Siddlingalli Mahadevappa Murigendrappa (a1) and Hemantha Kumar (a1)

Abstract

Effects of varying volume fractions of SiC nanoparticle (SiCNP) reinforcement on microstructure and mechanical properties of dissimilar AA2024-T351 and AA7075-T651 joints by friction stir welding (FSW) have been investigated experimentally. A rectangular section edge groove was prepared at the adjoining surfaces of the two plates with the butt configuration before FSW. Initially, four fractional volumes with 0, 5, 8, and 13% of SiCNP are reinforced into the grooves of width, 0, 0.2, 0.3, and 0.5 mm and the FSW was performed with the first and second pass to obtain metal matrix nanocomposite (MMNC) at the weld nugget zone (WNZ). The characterization of microstructure specimens was investigated using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction technique (XRD). The FSW joint specimen produced with 5 vol% fraction of SiCNP for second pass processing observes a defect-free, homogeneous distribution of SiCNP with a mean grain size of about 2–3 µm at the WNZ and weld joints higher in tensile strength, 411 MPa, yield strength, 252 MPa, and percentage elongation, 14.3. The result shows that varying volume fractions (5, 8, 13%) of the SiCNP after the FSW second pass led to significant grain refinement at the WNZ and higher mechanical properties compared with FSW specimens prepared without SiCNP. Higher hardness of 150 Hv was observed in the WNZ for specimen produced with 13 vol% fraction SiCNP.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: anilkumar_aks@rediffmail.com

References

Hide All
1.Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Templesmith, P., and Dawes, C.J.: Friction stir welding. GB Patent Application No. 9125978 and U.S. Patent No. 5460317, October 24, 1995.
2.Mishra, R.S. and Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng., R 50, 1 (2005).
3.Yang, Y., Lan, J., and Li, X.: Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater. Sci. Eng., A 380, 378 (2004).
4.GU, W.L.: Bulk Al/SiC nanocomposite prepared by ball milling and hot pressing method. Trans. Nonferrous Met. Soc. China 16, 398 (2006).
5.Carreño-Gallardo, C., Estrada-Guel, I., López-Meléndez, C., and Martínez-Sánchez, R.: Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill. J. Alloys Compd. 586, 68 (2014).
6.Min, S.O.: Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites. Trans. Nonferrous Met. Soc. China 19, 1400 (2009).
7.Ma, Z.Y., Li, Y.L., Liang, Y., Zheng, F., Bi, J., and Tjong, S.C.: Nanometric Si3N4 particulate-reinforced aluminum composite. Mater. Sci. Eng., A 219, 229 (1996).
8.Rahimian, M., Parvin, N., and Ehsani, N.: Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy. Mater. Sci. Eng., A 527, 1031 (2010).
9.Rahimian, M., Parvin, N., and Ehsani, N.: Size dependent strengthening in particle reinforced aluminium. Acta Mater. 50, 39 (2002).
10.Kawabe, A., Oshida, A., Kobayashi, T., and Toda, H.: Fabrication process of metal matrix composite with nano-size SiC particle produced by vortex method. J. Jpn. Inst. Light Met. 49, 149 (1999).
11.Don-Hyun, C., Yong-Il, K., Dae-Up, K., and Seung-Boo, J.U.: Effect of SiC particles on microstructure and mechanical property of friction stir processed AA6061-T4. Trans. Nonferrous Met. Soc. China 22, 614 (2012).
12.Akramifard, H.R., Shamanian, M., Sabbaghian, M., and Esmailzadeh, M.: Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 54, 838 (2014).10.1016/j.matdes.2013.08.107
13.Wang, W., Shi, Q.Y., Liu, P., Li, H.K., and Li, T.: A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. J. Mater. Process. Technol. 209, 2099 (2009).10.1016/j.jmatprotec.2008.05.001
14.Dolatkhah, A., Golbabaei, P., Givi, M.B., and Molaiekiya, F.: Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 37, 458 (2012).
15.Azizieh, M., Kokabi, A.H., and Abachi, P.: Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater. Des. 32, 2034 (2011).10.1016/j.matdes.2010.11.055
16.Sathiskumar, R., Murugan, N., Dinaharan, I., and Vijay, S.J.: Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing. Mater. Charact. 84, 16 (2013).
17.Abbasi, M., Abdollahzadeh, A., Bagheri, B., and Omidvar, H.: The effect of SiC particle addition during FSW on microstructure and mechanical properties of AZ31 magnesium alloy. J. Mater. Eng. Perform. 24, 5037 (2015).
18.Bahrami, M., Dehghani, K., and Givi, M.K.: A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique. Mater. Des. 53, 217 (2014).
19.Tabasi, M., Farahani, M., Givi, M.B., Farzami, M., and Moharami, A.: Dissimilar friction stir welding of 7075 aluminum alloy to AZ31 magnesium alloy using SiC nanoparticles. Int. J. Adv. Des. Manuf. Technol. 86, 705 (2016).10.1007/s00170-015-8211-y
20.Liu, H., Hu, Y., Zhao, Y., and Fujii, H.: Microstructure and mechanical properties of friction stir welded AC4A + 30 vol% SiCp composite. Mater. Des. 65, 395 (2015).
21.Byung-Wook, A.H., Don-Hyun, C.H., Yong-Hwan, K.I., and Seung-Boo, J.U.: Fabrication of SiCp/AA5083 composite via friction stir welding. Trans. Nonferrous Met. Soc. China 22, 634 (2012).
22.Pantelis, D.I., Karakizis, P.N., Daniolos, N.M., Charitidis, C.A., Koumoulos, E.P., and Dragatogiannis, D.A.: Microstructural study and mechanical properties of dissimilar friction stir welded AA5083-H111 and AA6082-T6 reinforced with SiC nanoparticles. Mater. Manuf. Processes 31, 264 (2016).10.1080/10426914.2015.1019095
23.Sun, Y.F. and Fujii, H.: The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints. Mater. Sci. Eng., A 528, 5470 (2011).
24.Hamdollahzadeh, A., Bahrami, M., Nikoo, M.F., Yusefi, A., Givi, M.B., and Parvin, N.: Microstructure evolutions and mechanical properties of nano-SiC-fortified AA7075 friction stir weldment: The role of second pass processing. J. Manuf. Process. 20, 367 (2015).
25.El-Rayes, M.M. and El-Danaf, E.A.: The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082. J. Mater. Process. Technol. 212, 1157 (2012).
26.Bahrami, M., Givi, M.K., Dehghani, K., and Parvin, N.: On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Mater. Des. 53, 519 (2014).
27.Salehi, M., Saadatmand, M., and Mohandesi, J.A.: Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing. Trans. Nonferrous Met. Soc. China 22, 1055 (2012).
28.Seighalani, K.R., Givi, M.B., Nasiri, A.M., and Bahemmat, P.: Investigations on the effects of the tool material, geometry and tilt angle on friction stir welding of pure titanium. J. Mater. Eng. Perform. 19, 955 (2010).
29.Kumar, B.A. and Murugan, N.: Optimization of friction stir welding process parameters to maximize tensile strength of stir cast AA6061-T6/AlNp composite. Mater. Des. 57, 383 (2014).10.1016/j.matdes.2013.12.065
30.Sathiskumar, R., Dinaharan, I., Murugan, N., and Vijay, S.J.: Influence of tool rotational speed on microstructure and sliding wear behavior of Cu/B4C surface composite synthesized by friction stir processing. Trans. Nonferrous Met. Soc. China 25, 95 (2015).
31.Tutunchilar, S., Haghpanahi, M., Givi, M.B., Asadi, P., and Bahemmat, P.: Simulation of material flow in friction stir processing of a cast Al–Si alloy. Mater. Des. 40, 415 (2012).
32.Guo, J., Lee, B.Y., Du, Z., Bi, G., Tan, M.J., and Wei, J.: Effect of nano-particle addition on grain structure evolution of friction stir-processed Al6061 during postweld annealing. JOM 68, 2268 (2016).
33.Wang, Z., Song, M., Sun, C., and He, Y.: Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites. Mater. Sci. Eng., A 528, 1131 (2011).
34.Slipenyuk, A., Kuprin, V., Milman, Y., Goncharuk, V., and Eckert, J.: Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta Mater. 54, 157 (2006).
35.Palanivel, R., Mathews, P.K., Murugan, N., and Dinaharan, I.: Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Mater. Des. 40, 7 (2012).10.1016/j.matdes.2012.03.027
36.Dieter, G.E. and Bacon, D.: Mechanical Metallurgy (McGraw-Hill, London, 1988).
37.Rahimian, M., Ehsani, N., Parvin, N., and Baharvandi, H.R.: The effect of sintering temperature and the amount of reinforcement on the properties of Al–Al2O3 composite. Mater. Des. 30, 3333 (2009).
38.Bodaghi, M. and Dehghani, K.: Friction stir welding of AA5052: The effects of SiC nano-particles addition. Int. J. Adv. Des. Manuf. Technol. 88, 2651 (2017).10.1007/s00170-016-8959-8
39.Khodir, S.A. and Shibayanagi, T.: Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys. Mater. Sci. Eng., B 148, 82 (2008).10.1016/j.mseb.2007.09.024
40.Barmouz, M., Asadi, P., Givi, M.B., and Taherishargh, M.: Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles size and volume fraction. Mater. Sci. Eng., A 528, 1740 (2011).
41.Morisada, Y., Fujii, H., Nagaoka, T., and Fukusumi, M.: Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Mater. Sci. Eng., A 433, 50 (2006).
42.Scudino, S., Liu, G., Prashanth, K.G., Bartusch, B., Surreddi, K.B., Murty, B.S., and Eckert, J.: Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Mater. 57, 2029 (2009).
43.Ashby, M.F.: The theory of the critical shear stress and work hardening of dispersion-hardened crystals. In Proceeding of Second Bolton Landing Conference on Oxide Dispersion Strengthening (Gordon and Breach, Science Publishers, Inc., New York, 1968); p. 143.
44.Hansen, N.: The effect of grain size and strain on the tensile flow stress of aluminium at room temperature. Acta Metall. 25, 863 (1977).
45.Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64, 747 (1951).
46.Kim, H.S.: On the rule of mixtures for the hardness of particle reinforced composites. Mater. Sci. Eng., A 289, 30 (2000).
47.Kim, C.S., Sohn, I., Nezafati, M., Ferguson, J.B., Schultz, B.F., Bajestani-Gohari, Z., Rohatgi, P.K., and Cho, K.: Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J. Mater. Sci. 48, 4191 (2013).
48.Redsten, A.M., Klier, E.M., Brown, A.M., and Dunand, D.C.: Mechanical properties and microstructure of cast oxide-dispersion-strengthened aluminum. Mater. Sci. Eng., A 201, 88 (1995).
49.Wang, Z., Qu, R.T., Scudino, S., Sun, B.A., Prashanth, K.G., Louzguine-Luzgin, D.V., Chen, M.W., Zhang, Z.F., and Eckert, J.: Hybrid nanostructured aluminum alloy with super-high strength. NPG Asia Mater. 7, e229 (2015).
50.Markó, D., Prashanth, K.G., Scudino, S., Wang, Z., Ellendt, N., Uhlenwinkel, V., and Eckert, J.: Al-based metal matrix composites reinforced with Fe49.9Co35.1Nb7.7B4.5Si2.8 glassy powder: Mechanical behavior under tensile loading. J. Alloys Compd. 615, S382 (2014).
51.Vogt, R., Zhang, Z., Li, Y., Bonds, M., Browning, N.D., Lavernia, E.J., and Schoenung, J.M.: The absence of thermal expansion mismatch strengthening in nanostructured metal–matrix composites. Scr. Mater. 61, 1052 (2009).10.1016/j.scriptamat.2009.08.025
52.Kumar, A., Yadav, D., Perugu, C.S., and Kailas, S.V.: Influence of particulate reinforcement on microstructure evolution and tensile properties of in-situ polymer derived MMC by friction stir processing. Mater. Des. 113, 99 (2017).

Keywords

Type Description Title
WORD
Supplementary materials

Anil Kumar et al. supplementary material
Table S1

 Word (13 KB)
13 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed