Skip to main content Accessibility help

Experimental determination of the effective indenter shape and ε-factor for nanoindentation by continuously measuring the unloading stiffness

  • Benoit Merle (a1), Verena Maier (a1), Mathias Göken (a1) and Karsten Durst (a1)


The Oliver and Pharr method for evaluating nanoindentation load–displacement data is based on the measurement of the contact stiffness, which is usually determined at the very beginning of the unloading sequence, or, using dynamic nanoindentation, continuously during the whole loading segment. A new experimental method has been developed to continuously monitor the contact stiffness throughout the unloading sequence. It provides supplementary information about the shape and area of the residual impression, as well as a direct measurement of the shape of the effective indenter previously introduced by Pharr and Bolshakov. The new method was applied to indentations on fused silica, sapphire, nanocrystalline nickel, and ultrafine-grained aluminum. Lastly, the new procedure was adapted to directly measure the epsilon factor used in the Oliver and Pharr method. A value of 0.76 was found from indentation into fused silica, in close agreement with literature values.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
2.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
3.Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
4.Bolshakov, A., Oliver, W.C., and Pharr, G.M.: Explanation for the shape of nanoindentation unloading curves based on finite element simulation, in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Ross, C.A., Townsend, P.H., Volkert, C.A., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 675.
5.Pharr, G.M. and Bolshakov, A.: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).
6.Woirgard, J. and Dargenton, J-C.: An alternative method for penetration depth determination in nanoindentation measurements. J. Mater. Res. 12, 2455 (1997).
7.Schwarzer, N.: Elastic surface deformation due to indenters with arbitrary symmetry of revolution. J. Phys. D: Appl. Phys. 37, 2761 (2004).
8.Schwarzer, N.: Analysing nanoindentation unloading curves using Pharr’s concept of the effective indenter shape. Thin Solid Films 494, 168 (2006).
9.Herrmann, M. and Richter, F.: Determination of Young’s modulus of thin films using the concept of the effective indenter. Philos. Mag. 91, 1356 (2011).
10.Larsson, P-L., Giannakopoulos, A.E., Söderlund, E., Rowcliffe, D.J., and Vestergaard, R.: Analysis of the Berkovich indentation. Int. J. Solids Struct. 33, 221 (1996).
11.Malzbender, J., De With, G., and Den Toonder, J.: The P-h2 relationship in indentation. J. Mater. Res. 15, 1209 (2000).
12.Cheng, Y-T. and Cheng, C-M.: Scaling relationships in indentation of power-law creep solids using self-similar indenters. Philos. Mag. Lett. 81, 9 (2001).
13.Backes, B., Durst, K., and Göken, M.: Determination of plastic properties of polycrystalline metallic materials by nanoindentation: Experiments and finite element simulations. Philos. Mag. 86, 5541 (2006).
14.Hay, J.L., Agee, P., and Herbert, E.G.: Continuous stiffness measurement during instrumented indentation testing. Exp. Tech. 34, 86 (2010).
15.Pharr, G.M., Oliver, W.C., and Brotzen, F.R.: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613 (1992).
16.Hay, J.C., Bolshakov, A., and Pharr, G.M.: Critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 (1999).
17.Chudoba, T. and Jennett, N.M.: Higher accuracy analysis of instrumented indentation data obtained with pointed indenters. J. Phys. D: Appl. Phys. 41, 215407 (2008).
18.Pharr, G.M., Strader, J., and Oliver, W.C.: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653 (2009).
19.Natter, H. and Hempelmann, R.: Tailor-made nanomaterials designed by electrochemical methods. Electrochim. Acta 49, 51 (2003).
20.Li, Y.J., Mueller, J., Höppel, H.W., Göken, M., and Blum, W.: Deformation kinetics of nanocrystalline nickel. Acta Mater. 55, 5708 (2007).
21.Mueller, J., Durst, K., Amberger, D., and Göken, M.: Local investigations of the mechanical properties of ufg metals by nanoindentation. Mater. Sci. Forum 503504, 31 (2006).
22.Maier, V., Durst, K., Mueller, J., Backes, B., Höppel, H.W., and Göken, M.: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26(11), 1421 (2011).
23.Höppel, H.W., May, J., and Göken, M.: Enhanced strength and ductility in ultrafine grained aluminium produced by ARB. Adv. Eng. Mater. 6, 781 (2004).
24.Böhner, A., Maier, V., Durst, K., Höppel, H.W., and Göken, M.: Macro- and nanomechanical properties and strain-rate sensitivity of accumulative roll bonded and equal channel angular pressed ultrafine-grained materials. Adv. Eng. Mater. 13, 251 (2011).
25.Bolshakov, A. and Pharr, G.M.: Influences of pileup on the measurement of mechanical properties by load and depth-sensing indentation techniques. J. Mater. Res. 13, 1049 (1999).
26.Fischer-Cripps, A.C.: Illustrative analysis of load-displacement curves in nanoindentation. J. Mater. Res. 22, 3075 (2007).
27.Cheng, Y-T. and Cheng, C-M.: Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids. J. Mater. Res. 20, 1046 (2005).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed