Skip to main content Accessibility help

Example of microprocessing in a natural polymeric fiber: Role of reeling stress in spider silk

  • M. Elices (a1), G.V. Guinea (a1), G.R. Plaza (a1), J.I. Real (a1) and J. Pérez-Rigueiro (a1)...


Spider silk fibers were obtained by the monitored forced silking method. This procedure allows measurement of the silking force during the process and retrieving the fibers so their tensile behavior can be characterized. Silking conditions, including the reeling speed and the use of an anaesthetising gas, were varied to ascertain their influence on the tensile properties of the silk. In all cases, it was found that the tensile properties are determined by the silking stress, obtained by dividing the silking force by the diameter of the fiber. This suggests that the sophisticated spinning system of the spider can be characterized essentially by a single parameter, which controls the properties of spider silk almost independently of the reeling conditions.


Corresponding author

a) Address all correspondence to this author.e-mail:


Hide All
1.Structural Biological Materials edited by Elices, M. (Pergamon Press, Amsterdam, The Netherlands, 2000).
2.Kaplan, D.L., Lombardi, S.J., Muller, W.S., Fossey, S.A. Silks, in Biomaterials, Novel Materials from Biological Sources edited by Byrom, D. (Stockton Press, New York, 1991), pp. 153.
3.Silk Polymers, Materials Science and Biotechnology edited by Kaplan, D., Adams, W.W., Farmer, B., and Viney, C. (American Chemical Society, Washington, DC, 1994).
4.Elices, M., Pérez-Rigueiro, J., Plaza, G.R., Guinea, G.V.: Finding inspiration in Argiope trifasciata silk fibers. J. Mater. 57, 60 (2005).
5.Marsh, R.B., Corey, L., Pauling, L.: Structure of silk. Biochim. Biophys. Acta 16, 1 (1955).
6.Simmons, A.H., Michal, C.A., Jelinski, L.W.: Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84 (1996).
7.van Beek, J.D., Kümmerlen, J., Vollrath, F., Meier, B.H.: Supercontracted spider dragline silk: A solid-state NMR study of the local structure. Int. J. Biol. Macromol. 24, 173 (1999).
8.Jelinski, J.W., Blye, A., Liivak, O., Michal, C., LaVerde, G., Seidel, A., Shah, N., Yang, Z.: Orientation, structure, wet-spinning and molecular basis for supercontraction of spider dragline silk. Int. J. Biol. Macromol. 24, 197 (1999).
9.Zhou, H. and Zhang, Y.: Hierarchical chain model of spider silk capture silk elasticity. Phys. Rev. Lett. 94 028104 (2005).
10.Kerkam, K., Viney, C., Kaplan, D., Lombardi, S.: Liquid crystallinity of natural silk secretions. Nature 349, 596 (1991).
11.Vollrath, F., Knight, D.P.: Liquid crystalline spinning of spider silk. Nature 410, 541 (2001).
12.Jin, H-J., Kaplan, D.L.: Mechanisms of silk processing in insects and spiders. Nature 424, 1057 (2003).
13.Lazaris, A., Arcidiacono, S., Huang, Y., Zhou, J-F., Duguay, F., Chretien, N., Welsh, E.A., Soares, J.W., Karatzas, C.N.: Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295, 472 (2002).
14.Xu, M., Lewis, R.V.: Structure of a protein superfiber: Spider dragline silk. Proc. Natl. Acad. Sci. USA 87, 7120 (1990).
15.Gatesy, J., Hayashi, C., Motriuk, D., Woods, J., Lewis, R.: Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291, 2603 (2001).
16.Madsen, B., Shao, Z.Z., Vollrath, F.: Variability in the mechanical properties of spider silks on three levels: Interspecific, intraspecific and intraindividual. Int. J. Biol. Macromol. 24, 301 (1999).
17.Garrido, M.A., Elices, M., Viney, C., Pérez-Rigueiro, J.: Active control of spider silk strength: Comparison of drag line spun on vertical and horizontal surfaces. Polymer 43, 1537 (2002).
18.Guess, K.B., Viney, C.: Thermal analysis of major ampullate (drag line) spider silk: The effect of spinning rate on tensile modulus. Thermochim. Acta 315, 61 (1998).
19.Madsen, B., Vollrath, F.: Mechanics and morphology of silk drawn from anesthetized spiders. Naturwissenschaften 87, 148 (2000).
20.Pérez-Rigueiro, J., Elices, M., Plaza, G., Real, J.I., Guinea, G.V.: The effect of the spinning forces on spider silk properties. J. Exp. Biol. 208, 2633 (2005).
21.Pérez-Rigueiro, J., Elices, M., Plaza, G.R., Real, J.I., Guinea, G.V.: The influence of anaesthesia on the tensile properties of spider silk. J. Exp. Biol. 209, 320 (2006).
22.Pérez-Rigueiro, J., Viney, C., Llorca, J., Elices, M.: Silkworm silk as an engineering material. J. Appl. Polym. Sci. 70, 2439 (1998).
23.Guinea, G.V., Elices, M., Real, J.I., Gutiérrez, S., Pérez-Rigueiro, J.: Reproducibility of the tensile properties of spider (Argiope trifasciata) silk obtained by forced silking. J. Exp. Zool. 303A, 37 (2005).
24.Pérez-Rigueiro, J., Elices, M., Llorca, J., Viney, C.: Tensile properties of Argiope trifasciata drag line silk obtained from the spider's web. J. Appl. Polym. Sci. 82, 2245 (2001).
25.Pérez-Rigueiro, J., Elices, M., Guinea, G.V.: Controlled supercontraction tailors the tensile behaviour of spider silk. Polymer 44, 3733 (2003).
26.Vollrath, F., Madsen, B., Shao, Z.: The effect of spinning conditions on the mechanics of a spider's dragline silk. Proc. R. Soc. London B: Biol. Sci. 268, 2339 (2001).
27.Ortlepp, C.S., Gosline, J.M.: Consequences of forced silking. Biomacromolecules 5, 727 (2004).
28.Termonia, Y. Molecular modelling of the stress/strain behavior of spider dragline, in Structural Biological Materials edited by Elices, M. (Pergamon Press, Amsterdam, The Netherlands, 2000), pp. 335349.


Example of microprocessing in a natural polymeric fiber: Role of reeling stress in spider silk

  • M. Elices (a1), G.V. Guinea (a1), G.R. Plaza (a1), J.I. Real (a1) and J. Pérez-Rigueiro (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed