Skip to main content Accessibility help

Evolution of microstructure and elevated-temperature properties with Mn addition in Al–Mn–Mg alloys

  • Kun Liu (a1) and X-Grant Chen (a1)


In the present work, various Mn amounts (up to 2 wt%) have been added into Al–Mn–Mg 3004 alloy to study their effect on the evolution of microstructure and elevated-temperature properties. Results showed that the dominant intermetallics are interdendritical Al6(MnFe) until to 1.5 wt% Mn. With further addition of Mn to 2 wt%, the blocky primary Al6Mn/Al6(MnFe) and high volume of fine Al6(MnFe) intermetallics form in the matrix, leading to the rapid increase on the volume fraction of intermetallics. After the precipitation heat treatment (375 °C/48 h), the precipitation of dispersoids increased with increasing Mn contents and reached the peak condition in the alloy with 1.5 wt% Mn, resulting in the highest yield strength and creep resistance at 300 °C. However, the elevated-temperature properties became worse in the alloy with 2 wt% Mn due to the lowest volume fraction of dispersoids and highest volume of dispersoid free zone.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Jürgen Eckert



Hide All
1. Li, Y.J., Muggerud, A.M.F., Olsen, A., and Furu, T.: Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy. Acta Mater. 60, 1004 (2012).
2. Liu, K. and Chen, X.G.: Development of Al–Mn–Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening. Mater. Des. 84, 340 (2015).
3. Liu, K. and Chen, X.G.: Evolution of intermetallics, dispersoids, and elevated temperature properties at various Fe contents in Al–Mn–Mg 3004 alloys. Metall. Mater. Trans. B 47B, 3291 (2015).
4. Li, Y.J. and Arnberg, L.: Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization. Acta Mater. 51, 3415 (2003).
5. Muggerud, A.M.F., Mørtsell, E.A., Li, Y., and Holmestad, R.: Dispersoid strengthening in AA3xxx alloys with varying Mn and Si content during annealing at low temperatures. Mater. Sci. Eng., A 567, 21 (2013).
6. Liu, K., Ma, H., and Chen, X.G.: Enhanced elevated-temperature properties via Mo addition in Al–Mn–Mg 3004 alloy. J. Alloys Compd. 694, 354 (2017).
7. Liu, K., Nabawy, A.M., and Chen, X-G.: Influence of TiB2 nanoparticles on the elevated-temperature properties of Al–Mn–Mg 3004 alloy. Trans. Nonferrous Met. Soc. China 27, 771 (2017).
8. Kaufman, J.G.: Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures (ASM International; Aluminum Association, Materials Park, Ohio; Washington, D.C., 1999); pp. 1693, 162–232.
9. Li, Y.J. and Arnberg, L.: Evolution of eutectic intermetallic particles in DC-cast AA3003 alloy during heating and homogenization. Mater. Sci. Eng., A 347, 130 (2003).
10. Muggerud, A.M.F., Li, Y., and Holmestad, R.: Composition and orientation relationships of constituent particles in 3xxx aluminum alloys. Philos. Mag. 94, 556 (2014).
11. Shukla, A. and Pelton, A.D.: Thermodynamic assessment of the Al–Mn and Mg–Al–Mn systems. J. Phase Equilib. Diffus. 30, 28 (2009).
12. Liu, X.J., Ohnuma, I., Kainuma, R., and Ishida, K.: Thermodynamic assessment of the aluminum–manganese (Al–Mn) binary phase diagram. J. Phase Equilib. 20, 45 (1999).
13. Mohammadtaheri, M.: A new metallographic technique for revealing grain boundaries in aluminum alloys. Metallogr., Microstruct., Anal. 1, 224 (2012).
14. Liu, P.X., Liu, Y., and Xu, R.: Microstructure quantitative analysis of directionally solidified Al–Ni–Y ternary eutectic alloy. Trans. Nonferrous Met. Soc. China 24, 2443 (2014).
15. Weibel, E.R. and Elias, H.: Quantitative Methods in Morphology (Springer-Verlag, Berlin, New York, 1967); pp. 8998.
16. Bahadur, A.: Intermetallic phases in Al–Mn alloys. J. Mater. Sci. 23, 48 (1988).
17. Kang, H., Li, X., Su, Y., Liu, D., Guo, J., and Fu, H.: 3-D morphology and growth mechanism of primary Al6Mn intermetallic compound in directionally solidified Al–3 at.% Mn alloy. Intermetallics 23, 32 (2012).
18. Liu, Y., Huang, G., Sun, Y., Zhang, L., Huang, Z., Wang, J., and Liu, C.: Effect of Mn and Fe on the formation of Fe- and Mn-rich intermetallics in Al–5Mg–Mn alloys solidified under near-rapid cooling. Materials 9, 88 (2016).
19. Zhao, Q., Holmedal, B., and Li, Y.: Influence of dispersoids on microstructure evolution and work hardening of aluminium alloys during tension and cold rolling. Philos. Mag. 93, 2995 (2013).
20. Es-Said, O.S., Zeihen, A., Ruprich, M., Quattrocchi, J., Thomas, M., Shin, K.H., O’Brien, M., Johansen, D., Tijoe, W.H., and Ruhl, D.: Effect of processing parameters on the earing and mechanical properties of strip cast type 3004 Al alloy. J. Mater. Eng. Perform. 3, 123 (1994).
21. Arzt, E.: Creep of dispersion strengthened materials: A critical assessment. Res Mech. 31, 399 (1991).
22. Knipling, K.E., Dunand, D.C., and Seidman, D.N.: Criteria for developing castable, creep-resistant aluminum-based alloys—A review. Z. Metallkd. 97, 246 (2006).
23. Dieter, G.E.: Mechanical Metallurgy (McGraw-Hill, New York, 1986); pp. 449450.
24. Karnesky, R.A., Meng, L., and Dunand, D.C.: Strengthening mechanisms in aluminum containing coherent Al3Sc precipitates and incoherent Al2O3 dispersoids. Acta Mater. 55, 1299 (2007).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed