Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T13:47:33.483Z Has data issue: false hasContentIssue false

Etching of polycrystalline diamond films by electron beam assisted plasma

Published online by Cambridge University Press:  31 January 2011

Koji Kobashi
Affiliation:
Kobe Steel, Ltd., Electronics Research Laboratory, 5-5, Takatsuka-dai 1-chome, Nishi-ku, Kobe 651–22, Japan
Shigeaki Miyauchi
Affiliation:
Kobe Steel, Ltd., Electronics Research Laboratory, 5-5, Takatsuka-dai 1-chome, Nishi-ku, Kobe 651–22, Japan
Koichi Miyata
Affiliation:
Kobe Steel, Ltd., Electronics Research Laboratory, 5-5, Takatsuka-dai 1-chome, Nishi-ku, Kobe 651–22, Japan
Kozo Nishimura
Affiliation:
Kobe Steel, Ltd., Electronics Research Laboratory, 5-5, Takatsuka-dai 1-chome, Nishi-ku, Kobe 651–22, Japan
Jorge J. Rocca
Affiliation:
Department of Electrical Engineering, Colorado State University, Fort Collins, Colorado 80523
Get access

Abstract

Polycrystalline diamond films were processed in a direct current plasma produced by a self-focused electron beam using combinations of H2, O2, and He as the processing gas. The film surfaces were observed by scanning electron microscopy, and characterized by x-ray photoelectron spectroscopy. It was found that for the case in which O2 was included in the processing gas, a high density of etch pits appeared on (100) faces of diamond grains, and oxygen was either physisorbed or chemisorbed at the film surface. It was demonstrated that the etching apparatus used was capable of forming at least a 5-μm wide pattern of polycrystalline diamond film.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Johnson, C. E., Hasting, M. A. S., and Weimer, W. A., J. Mater. Res. 5, 2320 (1990).CrossRefGoogle Scholar
2.Nimmagadda, R. R., Joshi, A., and Hsu, W. L., J. Mater. Res. 5, 2445 (1990).CrossRefGoogle Scholar
3.Tankala, K., DebRoy, T., and Alan, M., J. Mater. Res. 5, 2483 (1990).CrossRefGoogle Scholar
4.Plano, L., Yokota, S., and Ravi, K. V., Proc. Electrochem. Soc. 89–12, 380 (1989).Google Scholar
5.Uchida, N., Kurita, T., Ohkishi, H., Uematsu, K., and Saito, K., J. Cryst. Growth 114, 565 (1991).CrossRefGoogle Scholar
6.Uchida, N., Kurita, T., Uematsu, K., and Saito, K., J. Mater. Sci. Lett. 9, 249 (1990).CrossRefGoogle Scholar
7.Uchida, N., Kurita, T., Uematsu, K., and Saito, K., J. Mater. Sci. Lett. 9, 251 (1990).CrossRefGoogle Scholar
8.Sandhu, G. S. and Chu, W. K., Appl. Phys. Lett. 55, 437 (1989).CrossRefGoogle Scholar
9.Joshi, A. and Nimmagadda, R., J. Mater. Res. 6, 1484 (1991).CrossRefGoogle Scholar
10.Kobayashi, K., Mutsukura, N., and Machi, Y., Thin Solid Films 200, 139 (1991).CrossRefGoogle Scholar
11.Dorsch, O., Holzner, K., Werner, M., Obermeier, E., Harper, R. E., Johnson, C., Chalker, P. R., and Buckley-Golder, I. M., Diamond and Related Mater. 2, 1096 (1993).CrossRefGoogle Scholar
12.Landstrass, M. I., Plano, M. A., Moreno, M. A., McWilliams, S., Pan, L. S., Kania, D. R., and Han, S., Diamond and Related Mater. 2, 1033 (1993).CrossRefGoogle Scholar
13.Sato, Y. and Kamo, M., Surf. Coat. Technol. 39–40, 183 (1989).CrossRefGoogle Scholar
14.Ramesham, R. and Loo, B. H., J. Electrochem. Soc. 139, 1988 (1992);CrossRefGoogle Scholar
Errata, J. Electrochem. Soc. 139, 2874 (1992).Google Scholar
15.Grot, S. A., Ditizio, R. A., Gildenblat, G. Sh., Badzian, A. R., and Fonash, S. J., Appl. Phys. Lett. 61, 2326 (1992).CrossRefGoogle Scholar
16.Grot, S. A., Gildenblat, G. Sh., and Badzian, A. R., IEEE Electron Device Lett. 13, 462 (1992).CrossRefGoogle Scholar
17.Pearton, S. J., Katz, A., Rein, F., and Lothian, J. R., Electron. Lett. 28, 822 (1992).CrossRefGoogle Scholar
18.Efremow, N. N., Geis, M. W., Flanders, D. C., Lincoln, G. A., and Economou, N. P., J. Vac. Sci. Technol. B 3, 416 (1985).CrossRefGoogle Scholar
19.Rothschild, M., Arnone, C., and Ehrlich, D. J., J. Vac. Sci. Technol. B 4, 310 (1986).CrossRefGoogle Scholar
20.Johnson, C., Chalker, P. R., Buckley-Golder, I. M., Marsden, P. J., and Williams, S. W., Diamond and Related Mater. 2, 829 (1993).CrossRefGoogle Scholar
21.Moore, C. A., Rocca, J. J., Johonson, T., Collins, G. J., and Russell, P. E., Appl. Phys. Lett. 43, 290 (1983).CrossRefGoogle Scholar
22.Thompson, T. R., Rocco, J. J., Emery, K., Boyer, P. K., Collins, G. J., Appl. Phys. Lett. 43, 777 (1983).CrossRefGoogle Scholar
23.Rocco, J. J., Meyer, J. W., Farrell, M. R., and Collins, G. J., J. Appl. Phys. 56, 790 (1984).CrossRefGoogle Scholar
24.Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T., Phys. Rev. B 38, 4067 (1988).CrossRefGoogle Scholar
25. U.S. patent 4 940 015.Google Scholar