Skip to main content Accessibility help

ESR study of activated carbon fibers: preliminary results

  • S.L. di Vittorio (a1), A. Nakayama (a2), T. Enoki (a2), M.S. Dresselhaus (a3), M. Endo (a4) and N. Shindo (a5)...


We have carried out Electron Spin Resonance (ESR) measurements on activated carbon fibers (ACF) with specific surface areas (SSA) of 3000 and 2000 m2/g. The ESR spectrum of ACF fibers in air is extremely broad (500 to 1000 Gauss), and the spin susceptibility decreases rapidly with decreasing specific surface area. Also measured was the ESR signal of the desorbed fibers in vacuum. As a result of desorption, the broad peak decreases slightly in intensity, and a narrow (≍65 Gauss at room temperature) peak appears. We report results on the temperature dependence of both peaks. The narrow peak is interpreted as due to spins associated with dangling bonds, whereas we attribute the broad peak to the conduction carrier spins which is broadened by the boundary scattering process (T1 contribution) and the dipolar broadening process (T2 contribution) associated with the dangling bond spins.



Hide All
1Kuwabara, H., Suzuki, T., and Kaneko, K., J. Chem. Soc. Faraday Trans. 87, 1915 (1991).
2Fryer, J. R., Carbon 19, 431 (1981).
3Fung, A. and Dresselhaus, M. S., J. Mater. Res. 8, 1875 (1993).
4Dresselhaus, M. S., Fung, A. W. P, Rao, A. M., di Vittorio, S. L., Kuriyama, K., Dresselhaus, G., and Endo, M., Carbon 30, 1065 (1992).
5Huttepain, M. and Oberlin, A., Carbon 28, 103 (1990).
6Bansal, R. P., Donnet, J-B., and Stoeckli, F., Active Carbon (Marcel Dekker, New York, 1988).
7Fung, A. W. P., Rao, A. M., Kuriyama, K., Dresselhaus, M. S., Dresselhaus, G., and Endo, M., in Abstracts of the 20th Biennial Conference on Carbon, Santa Barbara, CA, p. 296 (1991).
8Kuriyama, K. and Dresselhaus, M. S., J. Mater. Res. 6, 1040 (1991).
9Mrozowski, S., J. Low Temp. Phys. 35, 231 (1979).
10Wagoner, G., Phys. Rev. 118, 647 (1960).
11Marshik, B., Apple, T., Meyer, D., Wagoner, G., and Woollam, J. A., in Extended Abstracts No. 8, Graphite Intercalation Compounds, edited by Dresselhaus, M. S., Dresselhaus, G., and Solin, S. A. (Materials Research Society, Pittsburgh, PA, 1986), p. 120.
12Shindo, N., Tai, K., and Matsumura, Y., Chem. Eng., January, 28 (1987).
13Tanahashi, I., Yoshida, A., and Nishino, A., J. Appl. Electrochem. 21, 28 (1991).
14Mrozowski, S., Proceedings of the 5th Carbon Conference (Pergamon Press, New York, 1963), Vol. 2.
15Bright, A. A. and Singer, L. S., Carbon 17, 59 (1979).
16Dyson, F. J., Phys. Rev. 98, 349 (1955).
17Dresselhaus, M. S., Dresselhaus, G., Sugihara, K., Spain, I. L., and Goldberg, H. A., Graphite Fibers and Filaments, Springer Series in Materials Science (Springer-Verlag, Berlin, 1988), Vol. 5.
18Elliott, R. J., Phys. Rev. 96, 266 (1954).
19Yafet, Y., Solid State Physics, edited by Seitz, F. and Turnbull, D. (Academic Press, New York, 1963), Vol. 14.
20Sugihara, K., J. Phys. Soc. Jpn. 53, 393 (1984).
21Nakayama, A., unpublished.
22Armstrong, J., Jackson, C., and Marsh, H., Carbon 2, 239 (1964).
23Waller, Z., Z. Phys. 79, 370 (1932).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed