Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T15:02:33.805Z Has data issue: false hasContentIssue false

Epitaxy of barium titanate thin films grown on MgO by pulsed-laser ablation

Published online by Cambridge University Press:  31 January 2011

M. Grant Norton
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Christopher Scarfone
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Jian Li
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
C. Barry Carter
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
James W. Mayer
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Get access

Abstract

Thin films of barium titanate (BaTiO3) have been deposited by pulsed-laser ablation onto (001)-oriented MgO substrates. The films were epitactic with the c-axis perpendicular to the film-substrate interface, as evidenced by both transmission electron microscopy (TEM) and ion-channeling techniques. The elastic resonance of 3.045 MeV α-particles, generating the 16O(α, α)16O reaction was used to determine the oxygen stoichiometry of the film and the minimum yield based on the oxygen peaks, thereby enabling conclusions to be drawn about the crystalline perfection of the oxygen sublattice.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Norton, M. G., English, G. R., and Carter, C. B., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990).Google Scholar
2.Norton, M. G., Scarfone, C., English, G. R., and Carter, C. B., Proc. Xllth Int. Congress for Electron Microscopy, 706 (1990).Google Scholar
3.Norton, M. G. and Carter, C. B., J. Mater. Res. 5, 2762 (1990).CrossRefGoogle Scholar
4.Scarfone, C., Norton, M. G., Li, J., Carter, C. B., and Mayer, J. W., in Surface Chemistry and Beam-Solid Interactions, edited by Atwater, H., Lowndes, D., and Houle, F. A. (Mater. Res. Soc. Symp. Proc. 201, Pittsburgh, PA, 1991).Google Scholar
5.Scarfone, C., M. S. Thesis, Cornell University (1990).Google Scholar
6.Moeckly, B. H., Russek, S. E., Lathrop, D. K., Buhrman, R. A., Li, J., and Mayer, J. W., Appl. Phys. Lett. 57, 1687 (1990).CrossRefGoogle Scholar
7.Davis, G. M. and Gower, M. C., Appl. Phys. Lett. 55, 112 (1989).CrossRefGoogle Scholar
8.Blanpain, B., Revesz, P., Doolittle, L. R., Purser, K. H., and Mayer, J. W., Nucl. Instrum. Methods B34, 459 (1988).CrossRefGoogle Scholar
9.Feldman, L. C., Mayer, J. W., and Picraux, S. T., Materials Analysis by Ion Channeling (Academic Press, New York, 1982).Google Scholar
10.Ramesh, R., Luther, K., Wilkens, B., Hart, D. L., Wang, E., Tarascon, J. M., Inam, A., Wu, X. D., and Venkatesan, T., Appl. Phys. Lett. 57, 1505 (1990).CrossRefGoogle Scholar
11.Li, Q., Meyer, O., Xi, X. X., Geerk, J., and Linker, G., Appl. Phys. Lett. 55, 310 (1989).CrossRefGoogle Scholar
12.Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J., Electron Microscopy of Thin Crystals (Kreiger, Malabar, 1977), pp. 357365.Google Scholar
13.Pashley, D. W., in Thin Films (American Society for Metals, Metals Park, OH, 1964), p. 71.Google Scholar
14.Norton, M. G. and Carter, C. B., J. Cryst. Growth 110, 641 (1991).CrossRefGoogle Scholar
15.Moulson, A. J. and Herbert, J. M., Electroceramics (Chapman and Hall, London, 1990).Google Scholar
16.Norton, M. G. and Carter, C. B., Physica C 172, 47 (1990).CrossRefGoogle Scholar