Skip to main content Accessibility help
×
Home

Epitaxially grown LiNbO3 thin films by polymeric precursor method

  • V. Bouquet (a1), M. I. B. Bernardi (a1), S. M. Zanetti (a1), E. R. Leite (a1), E. Longo (a1), J. A. Varela (a2), M. Guilloux Viry (a3) and A. Perrin (a3)...

Abstract

LiNbO3 thin films were grown on (0001) sapphire substrates by a chemical route, using the polymeric precursor method. The overall process consists of preparing a coating solution from the Pechini process, based on metallic citrate polymerization. The precursor films, deposited by dip coating, are then heat treated to eliminate the organic material and to synthesize the phase. In this work, we studied the influence of the heat treatment on the structural and optical properties of single-layered films. Two routes were also investigated to increase the film thickness: increasing the viscosity of the coating solution and/or increasing the number of successively deposited layers. The x-ray diffraction θ-2θ scans revealed the c-axis orientation of the single- and multilayered films and showed that efficient crystallization can be obtained at temperatures as low as 400 °C. The phi-scan diffraction evidenced the epitaxial growth with two in-plane variants. A microstructural study revealed that the films were crack free, homogeneous, and relatively dense. Finally, the investigation of the optical properties (optical transmittance and refractive index) confirmed the good quality of the films. These results indicate that the polymeric precursor method is a promising process to develop lithium niobate waveguides.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: p-bouquet@iris.ufscar.br

References

Hide All
1.Weis, R.S. and Gaylord, T.K., Appl. Phys. A37, 191 (1985).
2.Abouelleil, M.M. and Leonberger, F.G., J. Am. Ceram. Soc. 72, 1311 (1989).
3.Terabe, K., Iyi, N., Kitamura, K., and Kimura, S., J. Mater. Res. 10, 1779 (1995).
4.Ono, S. and Hirano, S., J. Am. Ceram. Soc. 80, 2533 (1997).
5.Derouin, T.A., Lakeman, C.D.E, Wu, X.H., Speck, J.S., and Lange, F.F., J. Mater. Res. 12, 1391 (1997).
6.Nashimoto, K., Moriyama, H., and Osakabe, E., Jpn. J. Appl. Phys., Part 1 35, 4936 (1996).
7.Braunstein, G., Paz-Pujalt, G.R., and Blanton, T.N., Thin Solid Films 264, 4 (1995).
8.Yamaguchi, N., Hattori, T., Terashima, K., and Yoshida, T., Thin Solid Films 316, 185 (1998).
9.Lee, S.Y. and Feigelson, R.S., J. Cryst. Growth 186, 594 (1998).
10.Kaigawa, K., Kawaguchi, T., Imaeda, M., Sakai, H., and Fukuda, T., J. Cryst. Growth 177, 217 (1997).
11.Tan, S., Gilbert, T., Hung, C-Y., Schlesinger, T.E., and Migliuolo, M., J. Appl. Phys. 79, 3548 (1996).
12.Nishida, T., Ishida, K., Horiuchi, T., Shiosaki, T., and Matsushige, K., Jpn. J. Appl. Phys., Part 2 35, L1699 (1996).
13.Liu, Z.G., Hu, W.S., Guo, X.L., Liu, J.M., and Feng, D., Appl. Surf. Sci. 109/110, 520 (1997).
14.Gonzalo, J., Afonso, C.N., Ballesteros, J.M., Grosman, A., and Ortega, C., J. Appl. Phys. 82, 3129 (1997).
15.Lee, S.H., Noh, T.W., and Lee, J.H., Appl. Phys. Lett. 68, 472 (1996).
16.Aubert, P., Garry, G., Bisaro, R., and Garcia Lopez, J., Appl. Surf. Sci. 86, 144 (1995).
17.Nashimoto, K., Haga, K., Watanabe, M., Nakamura, S., and Osakabe, E., Appl. Phys. Lett. 75, 1054 (1999).
18.Nashimoto, K., Nakamura, S., Morikawa, T., Moriyama, H., Watanabe, M., and Osakabe, E., Appl. Phys. Lett. 74, 2761 (1999).
19.Hur, N.H., Park, Y.K., Won, D.H., and No, K., J. Mater. Res. 9, 980 (1994).
20.Ogale, S.B., Nawathey-Dikshit, R., Dikshit, S.J., and Kanetkar, S.M., J. Appl. Phys. 71, 5718 (1992).
21.Bouquet, V., Zanetti, S.M., Foschini, C.R., Leite, E.R., Longo, E., and Varela, J.A., in Innovative Processing and Synthesis of Ceramics, Glasses and Composites, edited by Bansal, N.P., Logan, K.V., and Singh, J.P., (Ceram. Trans. 85, Am. Ceram. Soc., Westerville, OH, 1997), p. 333.
22.Bouquet, V., Longo, E., Leite, E.R., and Varela, J.A., J. Mater. Res. 14, 3115 (1999).
23.Schwyn, S., Lehman, H.W. and Widmer, R., J. Appl. Phys. 72, 1154 (1992).
24.Bouquet, V., Leite, E.R., Longo, E., and Varela, J.A., J. Eur. Ceram. Soc. 19, 1447 (1999).
25.Zanetti, S.M., Leite, E.R., Longo, E., and Varela, J.A., Appl. Organometal. Chem. 13, 373 (1999).
26.Zanetti, S.M., Leite, E.R., Longo, E., and Varela, J.A., J. Mater. Res. 14, 1026 (1999).
27.Pechini, M.P., U.S. Patent No. 3. 330 697 (1967).
28.Shibata, Y., Kaya, K., Akashi, K., Kanai, M., Kawai, T., and Kawai, S., J. Appl. Phys. 77, 1498 (1995).
29.Fujimura, N. and Ito, T., J. Cryst. Growth 115, 821 (1991).
30.Castel, X., Guilloux-Viry, M., Perrin, A., Lesueur, J., and Lalu, F., J. Cryst. Growth 187, 211 (1998).
31.Feigelson, R.S., J. Cryst. Growth 166, 1 (1996).
32.Zhu, J.S., Lu, X.M., Jiang, W., Tian, W., Zhu, M., Zhang, M.S., Chen, X.B., Liu, X., and Wang, Y.N., J. Appl. Phys. 81, 1392 (1997).
33.Ono, S., Bose, O., Unger, W., Takeichi, Y., and Hirano, S., J. Am. Ceram. Soc. 81, 1749 (1998).
34.Bouquet, V., Internal report, LiEC-DQ, UFSCar, Saõ Carlos, SP, Brazil (2000).

Epitaxially grown LiNbO3 thin films by polymeric precursor method

  • V. Bouquet (a1), M. I. B. Bernardi (a1), S. M. Zanetti (a1), E. R. Leite (a1), E. Longo (a1), J. A. Varela (a2), M. Guilloux Viry (a3) and A. Perrin (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed