Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-05T11:03:27.988Z Has data issue: false hasContentIssue false

Epitaxially grown LiNbO3 thin films by polymeric precursor method

Published online by Cambridge University Press:  31 January 2011

V. Bouquet*
Affiliation:
Departamento de Química—LIEC, Universidade Federal de São Carlos, P.O. Box 676, 13 565–905 São Carlos, SP, Brazil
M. I. B. Bernardi
Affiliation:
Departamento de Química—LIEC, Universidade Federal de São Carlos, P.O. Box 676, 13 565–905 São Carlos, SP, Brazil
S. M. Zanetti
Affiliation:
Departamento de Química—LIEC, Universidade Federal de São Carlos, P.O. Box 676, 13 565–905 São Carlos, SP, Brazil
E. R. Leite
Affiliation:
Departamento de Química—LIEC, Universidade Federal de São Carlos, P.O. Box 676, 13 565–905 São Carlos, SP, Brazil
E. Longo
Affiliation:
Departamento de Química—LIEC, Universidade Federal de São Carlos, P.O. Box 676, 13 565–905 São Carlos, SP, Brazil
J. A. Varela
Affiliation:
Instituto de Química, Universidade Estadual Paulista, P.O. Box 355, 14884-970 Araraquara, SP, Brazil
M. Guilloux Viry
Affiliation:
Laboratoire Chimie du Solide et Inorganique Moléculaire, UMR CNRS 6511, Université de Rennes 1, Av. du Général Leclerc, 35 042 Rennes cedex, France
A. Perrin
Affiliation:
Laboratoire Chimie du Solide et Inorganique Moléculaire, UMR CNRS 6511, Université de Rennes 1, Av. du Général Leclerc, 35 042 Rennes cedex, France
*
a)Address all correspondence to this author. e-mail: p-bouquet@iris.ufscar.br
Get access

Abstract

LiNbO3 thin films were grown on (0001) sapphire substrates by a chemical route, using the polymeric precursor method. The overall process consists of preparing a coating solution from the Pechini process, based on metallic citrate polymerization. The precursor films, deposited by dip coating, are then heat treated to eliminate the organic material and to synthesize the phase. In this work, we studied the influence of the heat treatment on the structural and optical properties of single-layered films. Two routes were also investigated to increase the film thickness: increasing the viscosity of the coating solution and/or increasing the number of successively deposited layers. The x-ray diffraction θ-2θ scans revealed the c-axis orientation of the single- and multilayered films and showed that efficient crystallization can be obtained at temperatures as low as 400 °C. The phi-scan diffraction evidenced the epitaxial growth with two in-plane variants. A microstructural study revealed that the films were crack free, homogeneous, and relatively dense. Finally, the investigation of the optical properties (optical transmittance and refractive index) confirmed the good quality of the films. These results indicate that the polymeric precursor method is a promising process to develop lithium niobate waveguides.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Weis, R.S. and Gaylord, T.K., Appl. Phys. A37, 191 (1985).CrossRefGoogle Scholar
2.Abouelleil, M.M. and Leonberger, F.G., J. Am. Ceram. Soc. 72, 1311 (1989).CrossRefGoogle Scholar
3.Terabe, K., Iyi, N., Kitamura, K., and Kimura, S., J. Mater. Res. 10, 1779 (1995).CrossRefGoogle Scholar
4.Ono, S. and Hirano, S., J. Am. Ceram. Soc. 80, 2533 (1997).CrossRefGoogle Scholar
5.Derouin, T.A., Lakeman, C.D.E, Wu, X.H., Speck, J.S., and Lange, F.F., J. Mater. Res. 12, 1391 (1997).CrossRefGoogle Scholar
6.Nashimoto, K., Moriyama, H., and Osakabe, E., Jpn. J. Appl. Phys., Part 1 35, 4936 (1996).CrossRefGoogle Scholar
7.Braunstein, G., Paz-Pujalt, G.R., and Blanton, T.N., Thin Solid Films 264, 4 (1995).CrossRefGoogle Scholar
8.Yamaguchi, N., Hattori, T., Terashima, K., and Yoshida, T., Thin Solid Films 316, 185 (1998).CrossRefGoogle Scholar
9.Lee, S.Y. and Feigelson, R.S., J. Cryst. Growth 186, 594 (1998).CrossRefGoogle Scholar
10.Kaigawa, K., Kawaguchi, T., Imaeda, M., Sakai, H., and Fukuda, T., J. Cryst. Growth 177, 217 (1997).CrossRefGoogle Scholar
11.Tan, S., Gilbert, T., Hung, C-Y., Schlesinger, T.E., and Migliuolo, M., J. Appl. Phys. 79, 3548 (1996).CrossRefGoogle Scholar
12.Nishida, T., Ishida, K., Horiuchi, T., Shiosaki, T., and Matsushige, K., Jpn. J. Appl. Phys., Part 2 35, L1699 (1996).CrossRefGoogle Scholar
13.Liu, Z.G., Hu, W.S., Guo, X.L., Liu, J.M., and Feng, D., Appl. Surf. Sci. 109/110, 520 (1997).CrossRefGoogle Scholar
14.Gonzalo, J., Afonso, C.N., Ballesteros, J.M., Grosman, A., and Ortega, C., J. Appl. Phys. 82, 3129 (1997).CrossRefGoogle Scholar
15.Lee, S.H., Noh, T.W., and Lee, J.H., Appl. Phys. Lett. 68, 472 (1996).CrossRefGoogle Scholar
16.Aubert, P., Garry, G., Bisaro, R., and Garcia Lopez, J., Appl. Surf. Sci. 86, 144 (1995).CrossRefGoogle Scholar
17.Nashimoto, K., Haga, K., Watanabe, M., Nakamura, S., and Osakabe, E., Appl. Phys. Lett. 75, 1054 (1999).CrossRefGoogle Scholar
18.Nashimoto, K., Nakamura, S., Morikawa, T., Moriyama, H., Watanabe, M., and Osakabe, E., Appl. Phys. Lett. 74, 2761 (1999).CrossRefGoogle Scholar
19.Hur, N.H., Park, Y.K., Won, D.H., and No, K., J. Mater. Res. 9, 980 (1994).CrossRefGoogle Scholar
20.Ogale, S.B., Nawathey-Dikshit, R., Dikshit, S.J., and Kanetkar, S.M., J. Appl. Phys. 71, 5718 (1992).CrossRefGoogle Scholar
21.Bouquet, V., Zanetti, S.M., Foschini, C.R., Leite, E.R., Longo, E., and Varela, J.A., in Innovative Processing and Synthesis of Ceramics, Glasses and Composites, edited by Bansal, N.P., Logan, K.V., and Singh, J.P., (Ceram. Trans. 85, Am. Ceram. Soc., Westerville, OH, 1997), p. 333.Google Scholar
22.Bouquet, V., Longo, E., Leite, E.R., and Varela, J.A., J. Mater. Res. 14, 3115 (1999).CrossRefGoogle Scholar
23.Schwyn, S., Lehman, H.W. and Widmer, R., J. Appl. Phys. 72, 1154 (1992).CrossRefGoogle Scholar
24.Bouquet, V., Leite, E.R., Longo, E., and Varela, J.A., J. Eur. Ceram. Soc. 19, 1447 (1999).CrossRefGoogle Scholar
25.Zanetti, S.M., Leite, E.R., Longo, E., and Varela, J.A., Appl. Organometal. Chem. 13, 373 (1999).3.0.CO;2-7>CrossRefGoogle Scholar
26.Zanetti, S.M., Leite, E.R., Longo, E., and Varela, J.A., J. Mater. Res. 14, 1026 (1999).Google Scholar
27.Pechini, M.P., U.S. Patent No. 3. 330 697 (1967).Google Scholar
28.Shibata, Y., Kaya, K., Akashi, K., Kanai, M., Kawai, T., and Kawai, S., J. Appl. Phys. 77, 1498 (1995).CrossRefGoogle Scholar
29.Fujimura, N. and Ito, T., J. Cryst. Growth 115, 821 (1991).CrossRefGoogle Scholar
30.Castel, X., Guilloux-Viry, M., Perrin, A., Lesueur, J., and Lalu, F., J. Cryst. Growth 187, 211 (1998).CrossRefGoogle Scholar
31.Feigelson, R.S., J. Cryst. Growth 166, 1 (1996).CrossRefGoogle Scholar
32.Zhu, J.S., Lu, X.M., Jiang, W., Tian, W., Zhu, M., Zhang, M.S., Chen, X.B., Liu, X., and Wang, Y.N., J. Appl. Phys. 81, 1392 (1997).CrossRefGoogle Scholar
33.Ono, S., Bose, O., Unger, W., Takeichi, Y., and Hirano, S., J. Am. Ceram. Soc. 81, 1749 (1998).Google Scholar
34.Bouquet, V., Internal report, LiEC-DQ, UFSCar, Saõ Carlos, SP, Brazil (2000).Google Scholar