Skip to main content Accessibility help
×
Home

Epitaxial growth and interfaces of high-quality InN films grown on nitrided sapphire substrates

  • Fangliang Gao (a1), Yunfang Guan (a1), Jingling Li (a1), Junning Gao (a2), Junqiu Guo (a3) and Guoqiang Li (a3)...

Abstract

InN films have been grown on sapphire substrates nitrided by N plasma with different durations by radio-frequency plasma assisted molecular beam epitaxy (RF-MBE). In-depth investigation reveals that AlN is generated on a sapphire surface during the nitridation, and 60 min nitridation helps in the formation of an ordered and flat AlN interlayer between the substrate and the InN film, which improves the surface migration of In atoms on the substrate, and consequently helps in obtaining a single-crystalline c-plane InN film of high quality with 1.0 × 1019 cm−3 carrier density and 1350 cm2/(V·s) carrier mobility. Too short nitridation duration will result in a polycrystalline InN film, and too long nitridation duration will damage the surface quality of the newly generated AlN interlayer which consequently deteriorates the InN film quality. Control of the AlN interlayer quality plays a critical role in the growth of a high-quality InN epitaxial film on the sapphire substrate.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: msgli@scut.edu.cn

References

Hide All
1.Fu, S.P. and Chen, Y.F.: Effective mass of InN epilayers. Appl. Phys. Lett. 85, 1523 (2004).
2.Polyakov, V.M. and Schwierz, F.: Low-field electron mobility in wurtzite InN. Appl. Phys. Lett. 88, 032101 (2006).
3.Hurni, C.A., Choi, S., Bierwagen, O., and Speck, J.S.: Coupling resistance between n-type surface accumulation layer and p-type bulk in InN: Mg thin films. Appl. Phys. Lett. 100, 082106 (2012).
4.Knuumlbel, A., Aidam, R., Cimalla, V., Kirste, L., Baeumler, M., Leancu, C.C., Lebedev, V., Wallauer, J., Walther, M., and Wagner, J.: Transport characteristics of indium nitride (InN) films grown by plasma assisted molecular beam epitaxy (PAMBE). Phys. Status Solidi C 6, 1480 (2009).
5.Hwang, J-S., Tsai, J-T., Lin, K-I., Lee, M-H., Tsai, C-N., Lin, H-W., Gwo, S., and Chen, M-C.: Terahertz radiation mechanism of native n-type InN with different carrier concentrations. Appl. Phys. Express 3, 102202 (2010).
6.Metcalfe, G.D., Shen, H., Wraback, M., Koblmueller, G., Gallinat, C., Wu, F., and Speck, J.S.: Terahertz radiation from nonpolar InN due to drift in an intrinsic In-plane electric field. Appl. Phys. Express 3, 092201 (2010).
7.Ahn, H., Yeh, Y.J., Hong, Y.L., and Gwo, S.: Terahertz emission mechanism of magnesium doped indium nitride. Appl. Phys. Lett. 95, 232104 (2009).
8.Wang, X.Q., Zhao, G.Z., Zhang, Q., Ishitani, Y., Yoshikawa, A., and Shen, B.: Effect of Mg doping on enhancement of terahertz emission from InN with different lattice polarities. Appl. Phys. Lett. 96, 061907 (2010).
9.Hangleiter, A.: III-V nitrides: A new age for optoelectropics. MRS Bull. 28, 350 (2003).
10.Trybus, E., Namkoong, G., Henderson, W., Burnham, S., Doolittle, W.A., Cheung, M., and Cartwright, A.: InN: A material with photovoltaic promise and challenges. J. Cryst. Growth 288, 218 (2006).
11.Hovel, H.J. and Cuomo, J.J.: Electrical and optical properties or rf-sputtered GaN and InN. Appl. Phys. Lett. 20, 71 (1972).
12.Song, D.Y., Kuryatkov, V., Basavaraj, M., Rosenbladt, D., Nikishin, S.A., Holtz, M., Syrkin, A.L., Usikov, A.S., Ivantsov, V.A., and Dmitriev, V.A.: Morphological, electrical, and optical properties of InN grown by hydride vapor phase epitaxy on sapphire and template substrates. J. Appl. Phys. 99, 116103 (2006).
13.Rauch, C., Tuna, O., Giesen, C., Heuken, M., and Tuomisto, F.: Point defect evolution in low-temperature MOCVD growth of InN. Phys. Status Solidi A 209, 87 (2012).
14.Kuyyalil, J., Tangi, M., and Shivaprasad, S.M.: Dependence of crystal orientation and bandgap on substrate temperature of molecular-beam epitaxy grown InN on bare Al2O3 (0001). J. Appl. Phys. 109, 093513 (2011).
15.Stokker-Cheregi, F., Nedelcea, A., Filipescu, M., Moldovan, A., Colceag, D., Ion, V., Birjega, R., and Dinescu, M.: High temperature growth of InN on various substrates by plasma-assisted pulsed laser deposition. Appl. Surf. Sci. 257, 5312 (2011).
16.Li, G. and Yang, H.: Epitaxial growth of high quality nonpolar InN films on LiGaO2 substrates. Cryst. Growth Des. 11, 664 (2011).
17.Huang, Q., Li, S., Cai, D., and Kang, J.: Kinetic behavior of nitrogen penetration into indium double layer improving the smoothness of InN film. J. Appl. Phys. 111, 113528 (2012).
18.Lu, H., Schaff, W.J., Eastman, L.F., and Stutz, C.E.: Surface charge accumulation of InN films grown by molecular-beam epitaxy. Appl. Phys. Lett. 82, 1736 (2003).
19.Klochikhin, A.A., Davydov, V.Y., Strashkova, I.Y., and Gwo, S.: Classical and quantum solutions of the planar accumulation layer problem within the parabolic effective-mass approximation. Phys. Rev. B 76, 235325 (2007).
20.Mahboob, I., Veal, T.D., McConville, C.F., Lu, H., and Schaff, W.J.: Intrinsic electron accumulation at clean InN surfaces. Phys. Rev. Lett. 92, 036804 (2004).
21.Bhuiyan, A.G., Hashimoto, A., and Yamamoto, A.: Indium nitride (InN): A review on growth, characterization, and properties. J. Appl. Phys. 94, 2779 (2003).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed