Skip to main content Accessibility help
×
Home

Enhancement of the optical properties of copper sulfate crystal by the influence of shock waves

  • Aswathappa Sivakumar (a1), Madeswaran Sarumathi (a1), Sathiyadhas Sahaya Jude Dhas (a2) and Sathiyadhas Amalapushpam Martin Britto Dhas (a1)

Abstract

A systematic analysis was carried out to study the effect of shock waves on copper sulfate crystal in such a way that its optical properties and surface morphological properties were examined for different number of shock pulses (0, 1, 3, 5, and 7) with the constant Mach number 1.7. The test crystal of copper sulfate was grown by slow evaporation technique. The surface morphological and optical properties were scrutinized by optical microscope and ultraviolet–visible spectrometer, respectively. On exposing to shock waves, the optical transmission of the test crystal started increasing from the range of 35–45% with the increase of shock pulses and thereafter started decreasing to 25% for higher number of applied shocks. The optical band transition modes and optical band gap energies were calculated for pre- and post-shock wave loaded conditions. The experimentally obtained data prove that the optical constants such as absorption coefficient, extinction coefficient, skin depth, optical density, and optical conductivity are strongly altered, so also the optical transmission due to the impact of shock waves. Hence, shock wave induced high transmission test crystal can be used as an appropriate candidate for ultraviolet light filter applications.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: brittodhas@gmail.com

References

Hide All
1.Jayaram, V. and Reddy, K.P.J.: Experimental study of the effect of strong shock heated test gases with cubic zirconia. Adv. Mater. Lett. 7, 100 (2016).
2.Sivakumar, A., Suresh, S., Balachandar, S., Thirupathy, J., Kalyana Sundar, J., and Martin Britto Dhas, S.A.: Effect of shock waves on thermophysical properties of ADP and KDP crystals. Opt. Laser Technol. 111, 284 (2019).
3.Kalaiarasi, S., Sivakumar, A., Martin Britto Dhas, S.A., and Jose, M.: Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube. Mater. Lett. 219, 72 (2018).
4.Sivakumar, A., Suresh, S., Anto Pradeep, J., Balachandar, S., and Martin Britto Dhas, S.A.: Effect of shock waves on dielectric properties of KDP crystal. J. Electron. Mater. 47, 4831 (2018).
5.Meshcheyakov, Y., Atroshenko, S., Divakov, A., and Naumova, N.: The conditions for dynamic recrystallization of metals in shock waves. AIP Conf. Proc. 1426, 1367 (2012).
6.Xiao, G., Yang, X., Zhang, X., Wang, K., Huang, X., Ding, Z., Ma, Y., Zou, G., and Zou, B.: A protocol to fabricate nanostructured new phase: B31-type MnS synthesized under high pressure. J. Am. Chem. Soc. 137, 1029710303 (2015).
7.Xiao, G., Wang, Y., Han, D., Li, K., Feng, X., Lv, P., Wang, K., Liu, L., Redfern, S.A.T., and Zou, B.: Pressure-induced large emission enhancements of cadmium selenide nanocrystals. J. Am. Chem. Soc. 140, 1397013975 (2018).
8.Sivakumar, A. and Martin Britto Dhas, S.A.: Shock-wave-induced nucleation leading to crystallization in water. J. Appl. Crystallogr. 52, 10161021 (2019).
9.Zhang, L., Liu, C., Wang, L., Liu, C., Wang, K., and Zou, B.: Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9. Angew. Chem., Int. Ed. 57, 16 (2018).
10.Sivakumar, A., Saranraj, A., Sahaya Jude Dhas, S., and Martin Britto Dhas, S.A.: Shock wave induced enhancement of optical properties of benzil crystal. Mater. Res. Express 6, 046205 (2019).
11.Urtiew, P.A.: Effect of shock loading on transparency of sapphire crystals. J. Appl. Phys. 45, 3490 (1974).
12.Fatyanov, O.V., Webb, R.L., and Gupta, Y.M.: Optical transmission through inelastically deformed shocked sapphire: Stress and crystal orientation effects. J. Appl. Phys. 97, 123529 (2005).
13.Bakr, N.A., Al-Dhahir, T.A., and Mohammad, S.B.: Growth of copper sulfate pentahydrate single crystals by slow evaporation technique. J. Appl. Phys. 13, 4651 (2017).
14.Williamson, F.S.: Basic copper sulphate. J. Phys. Chem. 27, 380 (1923).
15.Zumstein, R.C. and Rousseau Anomalous, R.W.: Anomalous growth of large and small copper sulfate pentahydrate crystals. Ind. Eng. Chem. Res. 28, 289 (1989).
16.Manimekalai, R. and Ramachandra Raja, C.: EDTA effect on copper sulphate penta hydrate-A NLO material. Int. Res. J. Pure Appl. Chem. 3, 391 (2013).
17.Saranraj, A., Sahaya Jude Dhas, S., Vinitha, G., and Martin Britto Dhas, S.A.: Third harmonic generation and thermo-physical properties of benzophenone single crystal for photonic applications. Mater. Res. Express 4, 106204 (2017).
18.Kladkaew, M., Samranlertrit, N., Vailikhit, V., Teesetsopon, P., and Tubtimtae, A.: Effect of annealing process on the properties of undoped and manganese2+-doped co-binary copper telluride and tin telluride thin films. Ceram. Interfaces 44, 7186 (2018).
19.Meshcheryakov, Y.I., Divakov, A.K., Atroshenko, S.A., and Naumova, N.S.: Effect of velocity nonuniformity on the dynamic recrystallization of metals in shock waves. Tech. Phys. Lett. 36, 1125 (2010).
20.Gleason, A.E., Bolme, C.A., Lee, H.J., Nagler, B., Galtier, E., Milathianaki, D., Hawreliak, J., Kraus, R.G., Eggert, J.H., Fratanduono, D.E., Collins, G.W., Sandberg, R., Yang, W., and Mao, W.L.: Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat. Commun. 6, 8191 (2015).
21.Gaffar, M.A. and Abu El-Fadl, A.: Effect of doping and irradiation on optical parameters of triglycine sulphate single crystals. Cryst. Res. Technol. 34, 915 (1999).
22.Hassanien, A.S. and Akl, A.A.: Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50−xSex thin films. J. Alloys Compd. 648, 280 (2015).
23.Sivakumar, A., Saranraj, A., Sahaya Jude Dhas, S., Jose, M., and Martin Britto Dhas, S.A.: Shock wave-induced defect engineering for investigation on optical properties of triglycine sulfate crystal. Opt. Eng. 58, 077104 (2019).

Keywords

Type Description Title
WORD
Supplementary materials

Sivakumar et al. supplementary materials
Sivakumar et al. supplementary materials

 Word (1.9 MB)
1.9 MB

Enhancement of the optical properties of copper sulfate crystal by the influence of shock waves

  • Aswathappa Sivakumar (a1), Madeswaran Sarumathi (a1), Sathiyadhas Sahaya Jude Dhas (a2) and Sathiyadhas Amalapushpam Martin Britto Dhas (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed