Skip to main content Accessibility help
×
Home

Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy

  • Zhenggang Wu (a1), Wei Guo (a2), Ke Jin (a1), Jonathan D. Poplawsky (a2), Yanfei Gao (a3) and Hongbin Bei (a1)...

Abstract

Developing metallic materials with a good combination of strength and ductility has been an unending pursuit of materials scientists. The emergence of high/medium-entropy alloys (HEA/MEA) provided a novel strategy to achieve this. Here, we further strengthened a strong-and-ductile MEA using a traditional solid solution strengthening theory. The selection of solute elements was assisted by mechanical property and microstructure predictive models. Extensive microstructural characterizations and mechanical tests were performed to verify the models and to understand the mechanical behavior and deformation mechanisms of the designated CoCrNi–3W alloy. Our results show good experiment-model agreement. The incorporation of 3 at.% W into the ternary CoCrNi matrix increased its intrinsic strength by ∼20%. External strengthening through microstructural refinement led to a yield strength nearly double that of the parent alloy, CoCrNi. The increase in strength is obtained with still good ductility when tested down to 77 K. Nanoscale twin boundaries are observed in the post-fracture microstructure under 77 K. The combination of strength and ductility after W additions deviate from the traditional strength-ductility-trade-off contour.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: YGao7@utk.edu

Footnotes

Hide All
c)

These authors contributed equally to this work.

Footnotes

References

Hide All
1.Avner, S.H.: Introduction to Physical Metallurgy (McGraw-Hill Inc., New York, 1964).
2.Ashby, M.F. and Jones, D.R.H.: Engineering Materials 2, Corrections ed. (Pergamon Press, Oxford, 1992).
3.Dieter, G.E.: Mechanical Metallurgy (McGraw-Hill Higher Education, New York, 1986).
4.Garstone, J. and Honeycombe, R.W.K.: Dislocations and Mechanical Properties of Crystals (John-Wiley, New York, 1957).
5.Liu, A.: Mechanics and Mechanisms of Fracture (ASM International, Materials Park, Ohio, 2005).
6.Lund, C.H. and Wagner, H.J.: Oxidation of Nickle- and Cobalt-Base Superalloys; (Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio, 1965).
7.Soboyejo, W.O.: Advanced Structural Materials: Properties, Design Optimization, and Applications (CRC Press, Boca Raton, Florida, 2007).
8.Reed, R.C.: The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, U.K., 2006).
9.Okuda, T. and Fujiwara, M.: Dispersion behaviour of oxide particles in mechanically alloyed ODS steel. J. Mater. Sci. Lett. 14, 1600 (1995).
10.Ukai, S. and Fujiwara, M.: Perspective of ODS alloys application in nuclear environments. J. Nucl. Mater. 307–311, 749 (2002).
11.Hsiung, L.L., Fluss, M.J., Tumey, S.J., William, C.B., Serruys, Y., Willaime, F., and Kimura, K.: Formation mechanism and the role of nanoparticles in Fe–Cr ODS steels developed for radiation tolerance. Phys. Rev. B 82, 184103 (2010).
12.Wu, Z., Troparevsky, M.C., Gao, Y.F., Morris, J.R., Stocks, G.M., and Bei, H.: Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 267 (2017).
13.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcome. Adv. Eng. Mater. 6, 299 (2004).
14.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).
15.Tsai, M.H. and Yeh, J.W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).
16.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
17.Ye, Y.H., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: High-entropy alloy: Challenges and prospects. Mater. Today 19, 349 (2016).
18.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).
19.Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).
20.Gludovatz, B., Hohenwarter, A., Thurston, K., Bei, H., Wu, Z., George, E.P., and Ritchie, R.O.: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).
21.Laplanche, G., Kostka, A., Reinhart, C., Hunfeld, J., Eggeler, G., and George, E.P.: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 128, 292 (2017).
22.Miao, J., Slone, C.E., Smith, T.M., Niu, C., Bei, H., Ghazisaeidi, M., Pharr, G.M., and Mills, M.J.: The evolution of the deformation substructure in a Ni–Co–Cr equiatomic solid solution alloy. Acta Mater. 132, 35 (2017).
23.Stepanov, N.D., Shaysultanov, D.G., Yurchenko, N.Y., Zherebtsov, S.V., Ladygin, A.N., Salishchev, G.A., and Tikhonovsky, M.A.: High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy. Mater. Sci. Eng., A 636, 188 (2015).
24.Patriarca, L., Ojha, A., Sehitogla, H., and Chumlyakov, Y.I.: Slip nucleation in single crystal FeNiCoCrMn high entropy alloy. Scr. Mater. 112, 54 (2016).
25.Woo, W., Huang, E.W., Yeh, J.W., Choo, H., Lee, C., and Tu, S.: In situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy. Intermetallics 62, 1 (2015).
26.Wu, Y., Liu, W.H., Wang, X.L., Ma, D., Stoica, A.D., Nieh, T.G., He, Z.B., and Lu, Z.P.: In situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Appl. Phys. Lett. 104, 051910 (2014).
27.Moody, M.P., Stephenson, L.T., Ceguerra, A.V., and Ringer, S.P.: Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data. Microsc. Res. Tech. 71, 542 (2008).
28.Guo, W., Garfinkel, D.A., Tucker, J.D., Haley, D., Young, G.A., and Poplawsky, J.D.: An atom probe perspective on phase separation and precipitation in duplex stainless steels. Nanotechnology 27, 254004 (2016).
29.Cizek, L., Kratochvíl, P., and Smola, B.: Solid solution hardening of copper crystals. J. Mater. Sci. 9, 1517 (1974).
30.Pohl, C., Schatte, J., and Leitner, H.: Solid solution hardening of molybdenum–hafnium alloys: Experiments and modeling. Mater. Sci. Eng., A 559, 643 (2013).
31.Zander, J., Sandstrom, R., and Vitos, L.: Modelling mechanical properties for non-hardenable aluminium alloys. Comput. Mater. Sci. 41, 86 (2007).
32.Gypen, L.A. and Deruyttere, A.: Multi-component solid solution hardening. J. Mater. Sci. 12, 1034 (1977).
33.Wu, Z., Gao, Y., and Bei, H.: Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Mater. 120, 108 (2016).
34.Toda-Caraballo, I., Wrobel, J.S., Dudarev, S.L., Nguyen-Manh, D., and Rivera-Díaz-del-Castillo, P.E.J.: Interatomic spacing distribution in multicomponent alloys. Acta Mater. 97, 156 (2015).
35.Toda-Caraballo, I. and Rivera-Díaz-del-Castillo, P.E.J.: Modelling solid solution hardening in high entropy alloys. Acta Mater. 85, 14 (2015).
36.Gypen, L.A. and Deruyttere, A.: Multi-component solid solution hardening. J. Mater. Sci. 12, 1028 (1977).
37.Labusch, R.: Statistische theorien der mischkristallhärtung. Acta Metall. 20, 917 (1972).
38.Labusch, R.: A statistical theory of solid solution hardening. Phys. Status Solidi 41, 659 (1970).
39.Haasen, P.: Physical Metallurgy, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1996).
40.King, H.W.: Quantitative size-factors for metallic solid solutions. J. Mater. Sci. 1, 79 (1966).
41.Schiotz, J. and Jacobsen, K.W.: A maximum in the strength of nanocrystalline copper. Science 301, 1086636 (2003).
42.Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).
43.Wu, Z., Bei, H., Otto, F., Pharr, G.M., and George, E.P.: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131 (2014).
44.Humphreys, F.J. and Hatherly, M.: Recrystallization and Related Phenomena (Pergamon Press, Oxford, 2004); pp. 173 and 337.
45.Miller, M.K. and Forbes, R.G.: Atom-Probe Tomography: The Local Electrode Atom Probe (Springer, New York, 2014).
46.Suzuki, H. and Barrett, C.S.: Deformation twinning in silver-gold alloys. Acta Metall. 6, 156 (1958).
47.Yoshida, S., Bhattacharjee, T., Bai, Y., and Tsuji, N.: Friction stress and Hall–Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing. Scr. Mater. 134, 33 (2017).
48.Blewitt, T.H., Coltman, R.R., and Redman, J.K.: Low temperature deformation of copper single crystals. J. Appl. Phys. 28, 651 (1957).
49.Yang, P., Xie, Q., Meng, L., Ding, H., and Tang, Z.: Dependence of deformation twinning on grain orientation in a high manganese steel. Scr. Mater. 55, 629 (2006).
50.Ueji, R., Tsuchida, N., Terada, D., Tsuji, N., Tanaka, Y., Takemura, A., and Kunishige, K.: Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scr. Mater. 59, 963 (2008).
51.Gutierrez-Urrutia, I., Zaefferer, S., and Raabe, D.: The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt% Mn–0.6 wt% C TWIP steel. Mater. Sci. Eng., A 527, 3552 (2010).
52.Gallagher, P.C.J.: The influence of alloying, temperature, and related effects on the stacking fault energy. Metall. Mater. Trans. A 1, 2429 (1970).

Keywords

Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy

  • Zhenggang Wu (a1), Wei Guo (a2), Ke Jin (a1), Jonathan D. Poplawsky (a2), Yanfei Gao (a3) and Hongbin Bei (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed