Skip to main content Accessibility help
×
Home

Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding

  • Hailiang Yu (a1), Cheng Lu (a2), Kiet Tieu (a2), Huijun Li (a2), Ajit Godbole (a2), Xiong Liu (a2) and Charlie Kong (a3)...

Abstract

Laminate sheets attract increasing attention from researchers and engineers. In this paper, Al/Ti/Al laminate sheets were fabricated by using cryogenic roll bonding for first time. The edge defects, mechanical properties, and interface bonding of laminate sheets by cryogenic roll bonding technique were compared with these by room-temperature roll bonding technique. Results show that there are some edge cracks in laminate sheets by room-temperature roll bonding while they do not appear when subjected to cryogenic roll bonding. The ultimate tensile stress of laminate sheets by cryogenic roll bonding increases up to 36.7% compared to that by room-temperature roll bonding. When laminate sheets are rolled to 0.125 mm from 2.025 mm, the interfaces between Al and Ti layers are bonded well for both cryogenic roll bonding and room-temperature roll bonding. Finally, we discussed the improvement in edge quality and mechanical properties and the mechanism of interface bonding of Al/Ti/Al laminate sheets during cryogenic roll bonding.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: yuhailiang1980@tom.com or hailiang@uow.edu.au

Footnotes

Hide All

Contributing Editor: Yang-T. Cheng

Footnotes

References

Hide All
1. Bachmaier, A. and Pippan, R.: Generation of metallic nanocomposites by severe plastic deformation. Int. Mater. Rev. 58, 41 (2013).
2. Zeng, L.F., Gao, R., Fang, Q.F., Wang, X.P., Xie, Z.M., Miao, S., Hao, T., and Zhang, T.: High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding. Acta Mater. 110, 341 (2016).
3. Atrian, A. and Fereshteh-Saniee, F.: Deep drawing process of steel/brass laminated sheets. Composites, Part B 47, 75 (2013).
4. Viswanathan, V., Laha, T., Balani, K., Agarwal, A., and Seal, S.: Challenges and advances in nanocomposite processing techniques. Mater. Sci. Eng., A 54, 121 (2006).
5. Vecchio, K.S.: Synthetic multifunctional metallic-intermetallic laminate composites. JOM 57, 25 (2005).
6. Grujicie, M., Snipes, J.S., and Ramaswami, S.: Penetration resistance and ballistic-impact behavior of Ti/TiAl3 metal/intermetallic laminated composites (MILCs): A computational investigation. AIMS Mater. Sci. 3, 686 (2016).
7. Yu, H.L., Lu, C., Tieu, K., Li, H.J., Godbole, A., and Kong, C.: Annealing effect on microstructure and mechanical properties of Al/Ti/Al laminate sheets. Mater. Sci. Eng., A 660, 195 (2016).
8. Ma, M., Huo, P., Liu, W.C., Wang, G.J., and Wang, D.M.: Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding. Mater. Sci. Eng., A 636, 301 (2015).
9. Yu, H.L., Tieu, K., Lu, C., and Kong, C.: Abnormally high residual dislocation density in pure aluminum after Al/Ti/Al laminate annealing for seven days. Philos. Mag. Lett. 94, 732 (2014).
10. Qu, P., Zhou, L., Xu, H., and Acoff, V.L.: Microtexture development of niobium in a multilayered Ti/Al/Nb composite produced by accumulative roll bonding. Metall. Mater. Trans. A 45, 6217 (2014).
11. Qiu, X., Liu, R., Guo, S., Graeter, J.H., Kecskes, L., and Wang, J.: Combustion synthesis reactions in cold-rolled Ni/Al and Ti/Al multilayers. Metall. Mater. Trans. A 40, 1541 (2009).
12. Luo, J.G. and Acoff, V.L.: Using cold roll bonding and annealing to process Ti/Al multi-layered composites from element foils. Mater. Sci. Eng., A 379, 164 (2004).
13. Hosseini, M. and Danesh Manesh, H.: Bonding strength optimization of Ti/Cu/Ti clad composite produced by roll-bonding. Mater. Des. 81, 122 (2015).
14. Yu, H.L., Tieu, K., Lu, C., Liu, X., Godbole, A., Li, H.J., Kong, C., and Qin, Q.H.: A deformation mechanism of hard metal surrounded by soft metal during roll forming. Sci. Rep. 4, 5017 (2014).
15. Kim, J.S., Lee, D.H., Jung, S.P., Lee, K.S., Kim, K.J., Kim, H.S., Lee, B.J., Chang, Y.W., Yuh, J., and Lee, S.: Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties. Sci. Rep. 6, 26333 (2016).
16. Kim, J.S., Lee, K.S., Kwon, Y.N., Lee, B.J., Chang, Y.W., and Lee, S.: Improvement of interfacial bonding strength in roll-bonded Mg/Al clad sheets through annealing and secondary rolling process. Mater. Sci. Eng., A 628, 1 (2015).
17. Reihanian, M. and Naseri, M.: An analytical approach for necking and fracture of hard layer during accumulative roll bonding (ARB) of metallic multilayer. Mater. Des. 89, 1213 (2016).
18. Lee, K.S., Lee, S.E., Sung, H.K., Lee, D.H., Kim, J.S., Chang, Y.W., Lee, S., and Kwon, Y.N.: Influence of reduction ratio on the interface microstructure and mechanical properties of roll-bonded Al/Cu sheets. Mater. Sci. Eng., A 583, 177 (2013).
19. Akramifard, H.R., Mirzadeh, H., and Parsa, M.H.: Cladding of aluminum on AISI 304L stainless steel by cold roll bonding: Mechanism, microstructure, and mechanical properties. Mater. Sci. Eng., A 613, 232 (2014).
20. Beygi, R. and Kazeminezhad, M.: The effects of annealing phenomena on the energy absorption of roll-bonded Al-steel sheets during wedge tearing. Mater. Sci. Eng., A 527, 7329 (2010).
21. Jamaati, R. and Toroghinejad, M.: Cold roll bonding bond strengths: Review. Mater. Sci. Technol. 27, 1101 (2011).
22. Yu, H.L., Lu, C., Tieu, K., Li, H.J., Godbole, A., and Zhang, S.H.: Special rolling techniques for improvement of mechanical properties of ultrafine-grained metal sheets: A review. Adv. Eng. Mater. 18, 754 (2016).
23. Yan, J.C., Zhao, D.S., Wang, C.W., Wang, L.Y., Wang, Y., and Yang, S.Q.: Vacuum hot roll bonding of titanium alloy and stainless steel using nickel interlayer. Mater. Sci. Technol. 25, 914 (2009).
24. Yu, H.L., Liu, X.H., Li, X.W., and Godbole, A.: Crack healing in a low-carbon steel under hot plastic deformation. Metall. Mater. Trans. A 45, 1001 (2014).
25. Quadir, M.Z., Al-Buhamad, O., Bassman, L., and Ferry, M.: Development of a recovered/recrystallized multilayered microstructure in Al alloys by accumulative roll bonding. Acta Mater. 55, 5438 (2007).
26. Göken, M. and Höppel, H.W.: Tailoring nanostructured, graded, and particle-reinforced Al laminates by accumulative roll bonding. Adv. Mater. 23, 2663 (2011).
27. Li, L., Nagai, K., and Yin, F.: Progress in cold roll bonding of metals. Sci. Technol. Adv. Mater. 9, 023001 (2008).
28. Yu, H.L., Lu, C., Tieu, K., and Kong, C.: Fabrication of nanostructured aluminum sheets using four-layer accumulative roll bonding. Mater. Manuf. Processes 29, 448 (2014).
29. Jamaati, R., Toroghinejad, M.R., Amirkhanlou, S., and Edris, H.: On the achievement of nanostructured interstitial free steel by four-layer accumulative roll bonding process at room temperature. Metall. Mater. Trans. A 46, 4013 (2015).
30. Yu, H.L., Tieu, K., Lu, C., and Godbole, A.: An investigation of interface bonding of bimetallic foils by combined accumulative roll bonding and asymmetric rolling techniques. Metall. Mater. Trans. A 45, 4038 (2014).
31. Li, X., Zu, G., Ding, M., Mu, Y., and Wang, P.: Interfacial microstructural and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical rolling bonding and annealing. Mater. Sci. Eng., A 529, 485 (2011).
32. Yu, H.L., Lu, C., Tieu, K., Li, H.J., Godbole, A., Kong, C., and Zhao, X.: Simultaneous grain growth and grain refinement in bulk ultrafine-grained copper under tensile deformation at room temperature. Metall. Mater. Trans. A 47, 3785 (2016).
33. Shi, Y., Li, M., Guo, D., Ma, T., Zhang, Z., Li, X., Zhang, G., and Zhang, X.: Extraordinary toughening by cryorolling in Zr. Adv. Eng. Mater. 16, 167 (2014).
34. Immanuel, R. and Panigrahi, S.: Influence of cryorolling on microstructure and mechanical properties of a cast hypoeutectic Al–Si alloy. Mater. Sci. Eng., A 640, 424 (2015).
35. Xu, Z., Liu, M., Jia, Z., and Roven, H.J.: Effect of cryorolling on microstructure and mechanical properties of a peak-aged AA6082 extrusion. J. Alloys Compd. 695, 827 (2017).
36. Wang, Y., Chen, M., Zhou, F., and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).
37. Yu, H.L., Wang, H., Lu, C., Tieu, K., Li, H.J., Godbole, A., Liu, X., Kong, C., and Zhao, X.: Microstructure evolution of accumulative roll bonding processed pure aluminum during cryorolling. J. Mater. Res. 31, 797 (2016).
38. Tsuji, N., Saito, Y., Lee, S.H., and Minamino, Y.: ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 5, 338 (2003).
39. Chaudhari, G.P. and Acoff, V.L.: Titanium aluminid sheets made using roll bonding and reaction annealing. Intermetallics 18, 472 (2010).
40. Roy, S., Nataraj, B.R., Suwas, S., Kumar, S., and Chattopadhyay, K.: Accumulative roll bonding of aluminum alloys 2219/5086 laminates: Microstructural evolution and tensile properties. Mater. Des. 36, 529 (2012).
41. Yu, H.L., Su, L.H., Lu, C., Tieu, K., Li, H.J., Li, J.T., Godbole, A., and Kong, C.: Enhanced mechanical properties of ARB-processed aluminum alloy 6061 sheets by subsequent asymmetric cryorolling and ageing. Mater. Sci. Eng., A 674, 256 (2016).
42. Glazer, J., Verzasconi, S.L., Sawtell, R.R., and Morris, J.W. Jr.: Mechanical behavior of aluminum–lithium alloys at cryogenic temperatures. Metall. Trans. A 18, 1695 (1987).
43. Park, D.H., Choi, S.W., Kim, J.H., and Lee, J.M.: Cryogenic mechanical behavior of 5000- and 6000-series aluminum alloys: Issues on application to offshore plants. Cryogenics 68, 44 (2015).
44. Yu, H.L., Lu, C., Tieu, K., Liu, X.H., Sun, Y., Yu, Q.B., and Kong, C.: Asymmetric cryorolling for fabrication of nanostructural aluminum sheets. Sci. Rep. 2, 772 (2012).
45. Yu, H.L., Tieu, K., Lu, C., Liu, X.H., Godbole, A., and Kong, C.: Mechanical properties of Al–Mg–Si alloy sheets produced using asymmetric cryorolling and ageing treatment. Mater. Sci. Eng., A 568, 212 (2013).
46. Zhang, S., Li, R., Kang, H., Chen, Z., Wang, W., Zou, C., Li, T., and Wang, T.: A high strength and high electrical conductivity Cu–Cr–Zr alloy fabricated by cryorolling and intermediate aging treatment. Mater. Sci. Eng., A 680, 108 (2017).
47. Naga Krishna, N., Ashfaq, M., Susila, P., Sivaprasad, K., and Venkateswarlu, K.: Mechanical anisotropy and microstructural changes during cryorolling of Al–Mg–Si alloy. Mater. Charact. 107, 302 (2015).
48. Legros, M., Gianola, D.S., and Hemker, K.J.: In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater. 56, 2280 (2008).
49. Liao, X.Z., Kilmametov, A.R., Valiev, R.Z., Gao, H.S., Li, X.D., and Mukherjee, A.K.: High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl. Phys. Lett. 88, 021909 (2006).
50. Yu, H.L., Tieu, K., Hadi, S., Lu, C., Godbole, A., and Kong, C.: High strength and ductility of ultrathin laminate foils using accumulative roll bonding and asymmetric rolling. Metall. Mater. Trans. A 46, 869 (2015).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed