Skip to main content Accessibility help

Enhanced intrinsic photocatalytic activity of TiO2 electrospun nanofibers based on temperature assisted manipulation of crystal phase ratios

  • Ammara Riaz (a1), Hejinyan Qi (a2), Yuan Fang (a2), Jianfeng Xu (a1), Chunmei Zhou (a1), Zhengguo Jin (a2), Zhanglian Hong (a1), Mingjia Zhi (a1) and Yi Liu (a1)...


TiO2 nanofibers (TNFs) with different anatase/rutile phase ratios were fabricated using electrospinning technique followed by the annealing at different temperatures. The effect of annealing temperatures on their morphology, structural, and optical properties and photocatalytic activity was investigated. The photocatalytic performance of TNFs was evaluated by degradation of methyl orange (MO) in aqueous solution under the irradiation of simulated solar light. Annealing temperature significantly influenced photocatalytic degradation of MO due to the incorporation of rutile phase which suppresses recombination of photoactivated electron and hole pairs. Turnover frequency (TOF) of MO degradation was introduced to describe the intrinsic activity of TNFs. TNFs acquired best anatase/rutile phase ratio (A/R = 83/17) when annealed at 650 °C, resulting in highest TOF value 2394 h−1, two times higher as compared to P25 with similar anatase/rutile phase ratio (A/R = 85/15). Appropriate crystalline structure could be the reason for good photocatalytic activity as well as intrinsic activity of TNFs.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972).
2. Fujishima, A., Rao, T.N., and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1(1), 1 (2000).
3. Michael, R., Hoffmann, S.T.M., Choi, W., and Mannt, D.W.B.: Environmental applications of semiconductor photo-catalysis. Chem. Rev. 95(1), 69 (1995).
4. Duan, X., Wang, G., Wang, H., Wang, Y., Shen, C., and Cai, W.: Orientable pore-size-distribution of ZnO nanostructures and their superior photocatalytic activity. CrystEngComm 12(10), 2821 (2010).
5. Ji, P., Zhang, J., Chen, F., and Anpo, M.: Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Appl. Catal., B 85(3–4), 148 (2009).
6. Sayama, K., Hayashi, H., Arai, T., Yanagida, M., Gunji, T., and Sugihara, H.: Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds. Appl. Catal., B 94(1–2), 150 (2010).
7. Reddy, V.R., Hwang, D.W., and Lee, J.S.: Photocatalytic water splitting over ZrO2 prepared by precipitation method. Korean J. Chem. Eng. 20(6), 1026 (2003).
8. Bahnemann, W., Muneer, M., and Haque, M.M.: Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal. Today 124(3–4), 133 (2007).
9. Nakata, K. and Fujishima, A.: TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol., C 13(3), 169 (2012).
10. Liu, L., Zhao, H., Andino, J.M., and Li, Y.: Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2(8), 1817 (2012).
11. Fox, M.A. and Dulay, M.T.: Hetrogeneous photocatalysis. Chem. Rev. 93(1), 341 (1993).
12. Jennings, J.R., Ghicov, A., Peter, L.M., Schmuki, P., and Walker, A.B.: Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping and transfer of electrons. J. Am. Chem. Soc. 130(40), 13364 (2008).
13. Mai, L., Tian, X., Xu, X., Chang, L., and Xu, L.: Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 114(23), 11828 (2014).
14. Zheng, Z., Cheng, Y., Yan, X., Wang, R., and Zhang, P.: Enhanced electrochemical properties of graphene-wrapped ZnMn2O4 nanorods for lithium-ion batteries. J. Mater. Chem. A 2(1), 149 (2014).
15. Aravindan, V., Sundaramurthy, J., Kumar, P.S., Lee, Y.S., Ramakrishna, S., and Madhavi, S.: Electrospun nanofibers: A perspective electro-active material for constructing high performance Li-ion batteries. Chem. Commun. 51(12), 2225 (2015).
16. Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., and Yan, Y.Q.: One-dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15(5), 353 (2003).
17. Wang, J., Yang, G., Wang, L., and Yan, W.: Fabrication of a well-aligned TiO2 nanofiberous membrane by modified parallel electrode configuration with enhanced photocatalytic performance. RSC Adv. 6(37), 31476 (2016).
18. Li, D. and Xia, Y.: Fabrication of titania nanofibers by electrospinning. Nano Lett. 3(4), 555 (2003).
19. Nuansing, W., Ninmuang, S., Jarernboon, W., Maensiri, S., and Seraphin, S.: Structural characterization and morphology of electrospun TiO2 nanofibers. Mater. Sci. Eng., B 131(1–3), 147 (2006).
20. Ge, M., Cao, C., Huang, J., Li, S., Chen, Z., Zhang, K.Q., Al-Deyab, S.S., and Lai, Y.: A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 4(18), 6772 (2016).
21. Jung, J.W., Lee, C.L., Yu, S., and Kim, I.D.: Electrospun nanofibers as a platform for advanced secondary batteries: A comprehensive review. J. Mater. Chem. A 4(3), 703750 (2016).
22. Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev. 107(7), 2891 (2007).
23. Kumar, P.S., Sundaramurthy, J., Sundarrajan, S., Babu, V.J., Singh, G., Allakhverdiev, S.I., and Ramakrishna, S.: Hierarchical electrospun nanofibers for energy harvesting production and environmental remediation. Energy Environ. Sci. 7(10), 3192 (2014).
24. Tealdi, C., Quartarone, E., Galinetto, P., Grandi, M.S., and Mustarelli, P.: Flexible deposition of TiO2 electrodes for photocatalytic applications: Modulation of the crystal phase as a function of the layer thickness. J. Solid State Chem. 199, 1 (2013).
25. Sun, W., Liu, H., Hu, J., and Li, J.: Controllable synthesis and morphology-dependent photocatalytic performance of anatase TiO2 nanoplates. RSC Adv. 5(1), 513 (2015).
26. Hou, H., Wang, L., Gao, F., Wei, G., Zheng, J., Tang, B., and Yang, W.: Hierarchically porous TiO2/SiO2 fibers with enhanced photocatalytic activity. RSC Adv. 4(38), 19939 (2014).
27. Ma, D., Schadler, L.S., Siegel, R.W., and Hong, J.: Preparation and structure investigation of nanoparticle-assembled titanium dioxide microtubes. Appl. Phys. Lett. 83(9), 1839 (2003).
28. Lei, Y., Zhang, L.D., Meng, G.W., Li, G.H., Zhang, X.Y., Liang, C.H., Chen, W., and Wang, S.X.: Preparation and photoluminescence of highly ordered TiO2 nanowires arrays. Appl. Phys. Lett. 78(8), 1125 (2001).
29. Spurr, R.A. and Myers, H.: Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal. Chem. 29(6), 760 (1957).
30. Cullity, B.D.: Elements of X-ray Diffraction (Addison–Wesley, Reading, MA, 1978).
31. Wan, Q., Wang, T.H., and Zhao, J.C.: Enhanced photocatalytic activity of ZnO nanotetrapods. Appl. Phys. Lett. 87(8), 083105 (2005).
32. Zhou, C., Chen, Y., Guo, Z., Wang, X., and Yang, Y.: Promoted aerobic oxidation of benzyl alcohol on CNT supported platinum by iron oxide. Chem. Commun. 47(26), 7473 (2011).
33. Bakardjieva, S., Subrt, J., Stengl, V., Dianez, M.J., and Sayagues, M.: Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal., B 58(3–4), 193 (2005).
34. Huang, Z.M., Zhang, Y.Z., Kotaki, M., and Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223 (2003).
35. Edelson, L.H. and Glaeser, A.M.: Role of particle substructure in the sintering of monosized titania. J. Am. Ceram. Soc. 71(4), 225 (1988).
36. Zhang, H. and Banfield, J.F.: Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. J. Mater. Res. 15(2), 437448 (2000).
37. Nolan, N.T., Seery, M.K., Hinder, S.J., Healy, L.F., and Pillai, S.C.: A systematic study of the effect of silver on the chelation of formic acid to a titanium precursor and the resulting effect on the anatase to rutile transformation of TiO2 . J. Phys. Chem. C 114(30), 13026 (2010).
38. Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M.J., Palgrave, R.G., Parkin, I.P., Watson, G.W., Keal, T.W., Sherwood, P., Walsh, A., and Sokol, A.A.: Band alignment of rutile and anatse TiO2 . Nat. Mater. 12(9), 798801 (2013).
39. Vu, D., Li, X., Li, Z., and Wang, C.: Phase-structure effects of electrospun TiO2 nanofiber membrane on As(III) adsorption. J. Chem. Eng. Data 58(1), 71 (2013).
40. Li, H., Zhang, W., Li, B., and Pan, W.: Diameter dependent photocatalytic activity of electrospun TiO2 nanofiber. J. Am. Ceram. Soc. 93(9), 2503 (2010).
41. Kordouli, E., Dracopoulos, V., Vaimakis, T., Bourikas, K., Lycourghiotis, A., and Kordulis, C.: Comparative study of phase transition and textural changes upon calcination of two commercial titania samples: A pure anatase and a mixed anatase-rutile. J. Solid State Chem. 232, 42 (2015).
42. Li, H., Zhang, W., and Pan, W.: Enhanced photocatalytic activity of electrospun TiO2 nanofibers with optimal anatase/rutile ratio. J. Am. Ceram. Soc. 94(10), 3184 (2011).
43. Pei, C.C. and Leung, W.W.F.: Enhanced photocatalytic activity of electrospun TiO2/ZnO nanofibers with optimal anatase/rutile ratio. Catal. Commun. 37, 100 (2013).
44. Li, G. and Gray, K.A.: The solid–solid interface: Explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem. Phys. 339(1–3), 173 (2007).
45. Boudart, M.: Turnover rates in heterogeneous catalysis. Chem. Rev. 95(3), 661 (1995).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed