Skip to main content Accessibility help
×
Home

Engineering star-shaped lactic acid oligomers to develop novel functional adhesives

  • João M.C. Santos (a1), Diana R.S. Travassos (a1), Paula Ferreira (a1), Dina S. Marques (a1), Maria H. Gil (a1), Sónia P. Miguel (a2), Maximiano P. Ribeiro (a3), Ilidio J. Correia (a2) and Cristina M.S.G. Baptista (a1)...

Abstract

Direct polycondensation of L-lactic acid with a comonomer allows tailoring the properties of the product from the very first step. The viscous L-lactic acid co-oligomers with star-shaped architectures obtained were modified with three different acrylate monomers. Regardless the functionalization agent, UV curing was fast and all materials were cell compatible and promoted cell adhesion. The physical properties of the three star-shaped films exhibited a consistent trend as swelling capacity, hydrolytic instability, and gel content decreased simultaneously. A higher network density increased crosslinking degree and gel content among the films with an isocyanate group. The methacrylic end group functionalized material, lowest molecular weight, consistently exhibited the higher hydrolytic instability. Comparison of physical properties of these films with the corresponding linear materials reported previously confirmed the influence of precursor molecular architecture on the final material. The methodology developed herein is prone to scale-up and lead to the industrial production of new bioadhesives.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: cristina@eq.uc.pt

References

Hide All
1.Donkerwolcke, M., Burny, F., and Muster, D.: Tissues and bone adhesives—Historical aspects. Biomaterials 19, 1461 (1998).
2.Duarte, A., Coelho, J., Bordado, J., Cidade, M., and Gil, M.: Surgical adhesives: Systematic review of the main types and development forecast. Prog. Polym. Sci. 37, 1031 (2012).
3.Mehdizadeh, M. and Yang, J.: Design strategies and applications of tissue bioadhesives. Macromol. Biosci. 13, 271 (2013).
4.Bouten, P.J., Zonjee, M., Bender, J., Yauw, S.T., van Goor, H., van Hest, J.C., and Hoogenboom, R.: The chemistry of tissue adhesive materials. Prog. Polym. Sci. 39, 1375 (2014).
5.Mönkäre, J., Hakala, R., Vlasova, M., Huotari, A., Kilpeläinen, M., Kiviniemi, A., Meretoja, V., Herzig, K., Korhonen, H., and Seppälä, J.: Biocompatible photocrosslinked poly(ester anhydride) based on functionalized poly(ε-caprolactone) prepolymer shows surface erosion controlled drug release in vitro and in vivo. J. Controlled Release 146, 349 (2010).
6.Ifkovits, J.L. and Burdick, J.A.: Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 13, 2369 (2007).
7.Seppälä, J., Korhonen, H., Hakala, R., and Malin, M.: Photocrosslinkable polyesters and poly(ester anhydride)s for biomedical applications. Macromol. Biosci. 11, 1647 (2011).
8.Benson, R.S.: Use of radiation in biomaterials science. Nucl. Instrum. Methods Phys. Res., Sect. B 191, 752 (2002).
9.Decker, C.: Kinetic study and new applications of UV radiation curing. Macromol. Rapid Commun. 23, 1067 (2002).
10.Balakrishnan, B., Mohanty, M., Umashankar, P., and Jayakrishnan, A.: Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26, 6335 (2005).
11.Dong-An, W., Varghese, S., Sharma, B., Strehin, I., Fermanian, S., Gorham, J., Fairbrother, D.H., Cascio, B., and Elisseeff, J.H.: Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat. Mater. 6, 385 (2007).
12.Serrero, A., Trombotto, S., Bayon, Y., Gravagna, P., Montanari, S., and David, L.: Polysaccharide-based adhesive for biomedical applications: Correlation between rheological behavior and adhesion. Biomacromolecules 12, 1556 (2011).
13.Ferreira, P., Coelho, J., and Gil, M.: Development of a new photocrosslinkable biodegradable bioadhesive. Int. J. Pharm. 352, 172 (2008).
14.Brubaker, C.E. and Messersmith, P.B.: Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12, 4326 (2011).
15.Kord Forooshani, P. and Lee, B.P.: Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J. Polym. Sci., Part A: Polym. Chem. 55, 9 (2017).
16.Xiao, L., Wang, B., Yang, G., and Gauthier, M.: Poly(lactic acid)-based biomaterials: Synthesis, modification and applications. In Biomedical Science, Engineering and Technology, Ghista, D.N., ed. (InTech, Rijeka, Croatia, 2012); p. 248.
17.Zheng, X., Wang, Y., Lan, Z., Lyu, Y., Feng, G., Zhang, Y., Tagusari, S., Kislauskis, E., Robich, M.P., and McCarthy, S.: Improved biocompatibility of poly(lactic-co-glycolic acid) and poly-L-lactic acid blended with nanoparticulate amorphous calcium phosphate in vascular stent applications. J. Biomed. Nanotechnol. 10, 900 (2014).
18.Marques, D., Santos, J., Ferreira, P., Correia, T., Correia, I., Gil, M., and Baptista, C.: Photocurable bioadhesive based on lactic acid. Mater. Sci. Eng. C 58, 601 (2016).
19.Marques, D.S., Santos, J.M., Ferreira, P., Correia, T.R., Correia, I.J., Gil, M.H., and Baptista, C.M.: Functionalization and photocuring of an L-lactic acid macromer for biomedical applications. Int. J. Polym. Mater. Polym. Biomater. 65, 497 (2016).
20.Santos, J., Marques, D., Alves, P., Correia, T., Correia, I., Baptista, C.M., and Ferreira, P.: Synthesis, functionalization and characterization of UV-curable lactic acid based oligomers to be used as surgical adhesives. React. Funct. Polym. 94, 43 (2015).
21.Karikari, A.S., Mather, B.D., and Long, T.E.: Association of star-shaped poly(D,L-lactide)s containing nucleobase multiple hydrogen bonding. Biomacromolecules 8, 302 (2007).
22.Hakala, R.A., Korhonen, H., and Seppälä, J.V.: Hydrolysis behaviour of crosslinked poly(ester anhydride) networks prepared from functionalised poly(ε-caprolactone) precursors. React. Funct. Polym. 73, 11 (2013).
23.Helminen, A.O., Korhonen, H., and Seppälä, J.V.: Structure modification and crosslinking of methacrylated polylactide oligomers. J. Appl. Polym. Sci. 86, 3616 (2002).
24.Marrian, S.: The chemical reactions of pentaerythritol and its derivatives. Chem. Rev. 43, 149 (1948).
25.Åkesson, D., Skrifvars, M., Seppälä, J., Turunen, M., Martinelli, A., and Matic, A.: Synthesis and characterization of a lactic acid-based thermoset resin suitable for structural composites and coatings. J. Appl. Polym. Sci. 115, 480 (2010).
26.Karikari, A.S., Edwards, W.F., Mecham, J.B., and Long, T.E.: Influence of peripheral hydrogen bonding on the mechanical properties of photo-cross-linked star-shaped poly(D,L-lactide) networks. Biomacromolecules 6, 2866 (2005).
27.Vieira, A., Ferreira, P., Coelho, J., and Gil, M.: Photocrosslinkable starch-based polymers for ophthalmologic drug delivery. Int. J. Biol. Macromol. 43, 325 (2008).
28.Almeida, J., Ferreira, P., Lopes, A., and Gil, M.: Photocrosslinkable biodegradable responsive hydrogels as drug delivery systems. Int. J. Biol. Macromol. 49, 948 (2011).
29.Dinescu, S., Galateanu, B., Albu, M., Cimpean, A., Dinischiotu, A., and Costache, M.: Sericin enhances the bioperformance of collagen-based matrices preseeded with human-adipose derived stem cells (hADSCs). Int. J. Mol. Sci. 14, 1870 (2013).
30.Miguel, S.P., Ribeiro, M.P., Brancal, H., Coutinho, P., and Correia, I.J.: Thermoresponsive chitosan–agarose hydrogel for skin regeneration. Carbohydr. Polym. 111, 366 (2014).
31.Makadia, H.K. and Siegel, S.J.: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377 (2011).
32.Ma, X., Oyamada, S., Wu, T., Robich, M.P., Wu, H., Wang, X., Buchholz, B., McCarthy, S., Bianchi, C.F., and Sellke, F.W.: In vitro and in vivo degradation of poly(D,L-lactide-co-glycolide)/amorphous calcium phosphate copolymer coated on metal stents. J. Biomed. Mater. Res., Part A 96, 632 (2011).
33.Mason, N., Miles, C., and Sparks, R.: Hydrolytic degradation of poly DL-(Lactide). In Biomedical and Dental Applications of Polymers, Vol. 14, Gebelein, C.G. and Koblitz, F.F., eds. (Polymer Science and Technology, Plenum, New York, 1981); p. 279.
34.Vidovic, E.: The development of bioabsorbable hydrogels on the basis of polyester grafted poly(vinyl alcohol). Ph.D. thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen, Aachen, Germany, 2006.
35.Fraley, S.I., Feng, Y., Krishnamurthy, R., Kim, D-H., Celedon, A., Longmore, G.D., and Wirtz, D.: A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat. Cell Biol. 12, 598 (2010).

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Santos et al. supplementary material
Santos et al. supplementary material 1

 Unknown (2.8 MB)
2.8 MB
UNKNOWN
Supplementary materials

Santos et al. supplementary material
Santos et al. supplementary material 2

 Unknown (187 KB)
187 KB
UNKNOWN
Supplementary materials

Santos et al. supplementary material
Santos et al. supplementary material 3

 Unknown (17.2 MB)
17.2 MB
UNKNOWN
Supplementary materials

Santos et al. supplementary material
Santos et al. supplementary material 4

 Unknown (3.0 MB)
3.0 MB
UNKNOWN
Supplementary materials

Santos et al. supplementary material
Santos et al. supplementary material 5

 Unknown (1.7 MB)
1.7 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed