Skip to main content Accessibility help
×
Home

The energetics of La4LiAuO8

  • Tori Z. Forbes (a1), Joshua A. Kurzman (a2), Ram Seshadri (a3) and Alexandra Navrotsky (a4)

Abstract

La4LiAuO8 is a stable Au3+ oxide that was recently examined as a possible model compound for the role of Au3+ in heterogeneous catalysis. Due to the paucity of thermodynamic data, the energetics of La4LiAuO8 and its likely decomposition product, LiLaO2, were investigated. The ΔHf−ox, of La4LiAuO8 and LaLiO2 are both exothermic at −187.7 ± 5.8 and −41.4 ± 9.6 kJ/mol, respectively. From the thermodynamic data, the decomposition temperature of La4LiAuO8 was calculated as either 979 ± 95 or 1331 ± 43 °C for the formation of LiLaO2 or Li2O, respectively. Thus, LiLaO2 is the expected decomposition product.

Copyright

Corresponding author

b)Address all correspondence to this author. e-mail: anavrotsky@ucdavis.edu

References

Hide All
1.Hutchings, G.J.: Nanocrystalline gold catalysts: A reflection on catalyst discovery and the nature of active sites. Gold Bull. 42, 260 (2009).
2.Schubert, M.M., Hackenberg, S., van Veen, A.C., Muhler, M., Plzak, V., and Jurgen Behm, R.: CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction. J. Catal. 197, 113 (2001).
3.Fierro-Gonzalez, J.C. and Gates, B.C.: Role of cationic gold in supported CO oxidation catalysts. Catal. Today 122, 201 (2007).
4.Kurzman, J.A., Ouyang, X.Y., Bin Im, W., Li, J., Hu, J., Scott, S.L., and Seshadri, R.: La4LiAuO8 and La2BaPdO5: Comparing two highly stable d 8 square-planar oxides. Inorg. Chem. 49, 4670 (2010).
5.Abbattista, F., Vallino, M., and Mazza, D.: Preparation and crystallographic characteristics of the new phase La2Au0.5Li0.5O4. J. Less-Common Met. 110, 391 (1985).
6.Abbattista, F. and Vallino, M.: Remarks on the La2O3-Li2O binary system between 750 and 1000 °C. Ceram. Int. 9, 35 (1983).
7.Deb, N., Baruah, S.D., and Dass, N.N.: Synthesis, characterization and the thermal decomposition of lithium tris(oxalato)lanthanum(III)nonahydrate and sodium tris(oxalato)lanthanum(III)octahydrate. Thermochim. Acta 326, 43 (1999).
8.Kinnemann, A., Kieffer, R., Kaddouri, A., Poix, P., and Rehspringer, J.L.: Oxidative coupling of methane over LnLiO2, LnNaO2 and LnOx catalysts (Ln = samarium, neodymium, lanthanum X = chlorine, bromine). Promoting effect of magnesia, calcium oxide and strontium oxide. Catal. Today 6, 409 (1990).
9.Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).
10.Chase, M.W.J., Davies, C.A., Downey, J.J.R., Furrip, D.J., McDonald, R.A., and Syverud, A.N.: JANAF thermochemical tables third edition. J. Phys. Chem. Ref. Data 14 (1988).
11.Scherrer, P.: Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918).
12.Robbie, R.A. and Hemingway, B.S.: Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (104 Pascals) Pressure and at Higher Temperatures (U.S. Geological Bulletin, Washington, DC, 1995).
13.Helean, K.B. and Navrotsky, A.: Oxide melt solution calorimetry of rare earth oxides: Techniques, problems, cross-checks, successes. J. Therm. Anal. Calorim. 69, 751 (2002).
14.Arcidiacono, S., Bieri, N.R., Poulikakos, D., and Grigoropoulos, C.P.: On the coalescence of gold nanoparticles. Int. J. Multiphase Flow 30, 979 (2004).
15.Nanda, K.K.: Bulk cohesive energy and surface tension from the size-dependent evaporation study of nanoparticles. Appl. Phys. Lett. 87, 0219091 (2005).
16.Ashcroft, J.S. and Schwarzmann, E.: Standard enthalpy of formation of crystalline gold(III) oxide. J. Chem. Soc., Faraday Trans 1F 68, 1360 (1972).
17.Shi, H., Asahi, R., and Stampfl, C.: Properties of the gold oxides Au2O3 and Au2O: First-principles investigation. Phys. Rev. B 75, 20512151 (2007).
18.Ellingham, H.J.T.: Reducibility of oxides and sulfides in metallurgical processes. J. Soc. Chem. Ind. London 63, 125 (1944).
19.Gaskell, D.R.: Introduction to the Thermodynamics of Materials (Taylor and Francis, New York, 2003).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed