Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T22:39:24.131Z Has data issue: false hasContentIssue false

Elevated temperature deformation of fine-grained La0.9Sr0.1MnO3

Published online by Cambridge University Press:  31 January 2011

J. Wolfenstine
Affiliation:
Department of Chemical and Biochemical Engineering, University of California, Irvine, California 92717–2575
T. R. Armstrong
Affiliation:
Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352
W. J. Weber
Affiliation:
Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352
M. A. Boling-Risser
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
K. C. Goretta
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
J. L. Routbort
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
Get access

Abstract

Compressive creep behavior of fine-grained (5 μm) La0.9Sr0.1MnO3 with a relative theoretical density between 85 and 90% was investigated over the temperature range 1150–1300 °C in air. The fine grain size, brief creep transients, stress exponent close to unity, and absence of deformation-induced dislocations, suggested that the deformation was controlled by a diffusional creep mechanism. The activation energy for creep of La0.9Sr0.1MnO3 was 490 kJ/mole. A comparison of the activation energy for creep of La0.9Sr0.1MnO3 with existing diffusion and creep data for perovskite oxides suggested that the diffusional creep of La0.9Sr0.1MnO3 was controlled by lattice diffusion of the cations, either lanthanum or manganese.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Van Roosmalen, J. A. M. and Cordfunke, E. H. P., J. Solid State Chem. 110, 106 (1994).CrossRefGoogle Scholar
2.Kuo, J. H., Anderson, H. U., and Sparlin, D. M., J. Solid State Chem. 83, 52 (1989).CrossRefGoogle Scholar
3.Otoshi, S., Sasaki, H., Ohnishi, H., Hase, M., Ishimaru, K., Ippommatsu, M., Higuchi, T., Miyayama, M., and Yanagida, H., J. Electrochem. Soc. 138, 1519 (1991).CrossRefGoogle Scholar
4.Van Roosmalen, J. A. M. and Cordfunke, E. H. P., J. Solid State Chem. 110, 109 (1994).CrossRefGoogle Scholar
5.Kuo, J. H., Anderson, H. U., and Sparlin, D. M., J. Solid State Chem. 87, 55 (1990).CrossRefGoogle Scholar
6.Kertesz, M., Riess, I., Tannhauser, D. S., Langpape, R., and Rohr, F. J., J. Solid State Chem. 42, 125 (1982).CrossRefGoogle Scholar
7.Carter, S., Selcuk, A., Chater, R. J., Kajda, J., Kilner, J.A., and Steele, B. C. H., Solid State Ionics 53–56, 597 (1992).CrossRefGoogle Scholar
8.Van Roosmalen, J. A. M., J.Huijsmans, P. P., and Plomp, L., Solid State Ionics 66, 279 (1993).CrossRefGoogle Scholar
9.Hammouche, A., Siebert, E., and Hammou, A., Mater. Res. Soc. Bull. 24, 367 (1989).CrossRefGoogle Scholar
10.Koc, R. and Anderson, H. U., J. Mater. Sci. 27, 5837 (1992).CrossRefGoogle Scholar
11.Van Roosmalen, J. A. M., Cordfunke, E. H. P., and Huijsmans, J. P. P., Solid State Ionics 66, 285 (1993).CrossRefGoogle Scholar
12.Van Roosmalen, J. A. M., Cordfunke, E. H. P., and Helmholdt, R. B., J. Solid State Chem. 110, 100 (1994).CrossRefGoogle Scholar
13.Belzner, A., Gur, T. M., and Huggins, R. A., Solid State Ionics, 40/41, 535 (1990).CrossRefGoogle Scholar
14.Chakraborty, A., Sujatha Devi, P., and Maiti, H. S., Mater. Lett. 20, 63 (1994).CrossRefGoogle Scholar
15.Chick, L. A., Pederson, L. R., Maupin, G. D., Bates, J. L., Thomas, L. E., and Exarhos, G. J., Mater. Lett. 10, 6 (1990).CrossRefGoogle Scholar
16.Chick, L. A., Maupin, G. D., and Pederson, L. R., NanoStructured Mater. 4, 603 (1994).CrossRefGoogle Scholar
17.Routbort, J. L., Acta Metall. 30, 663 (1982).CrossRefGoogle Scholar
18.Duong, H. and Wolfenstine, J., Phys. Status Solidi A 129, 379 (1992).CrossRefGoogle Scholar
19.Routbort, J. L., Acta Metall. 27, 649 (1979).CrossRefGoogle Scholar
20.Mohamed, F. A. and Langdon, T. G., Phys. Status Solidi A 33, 375 (1976).CrossRefGoogle Scholar
21.Dorn, J. E., in Modern Chemistry for the Engineer and Scientist, edited by Robertson, W.D. (McGraw-Hill, New York, 1956), p. 276.Google Scholar
22.Nabarro, F. R. N., in Report of a Conference on Strength of Solids (The Physical Society, London, 1948), p. 75.Google Scholar
23.Herring, C., J. Appl. Phys. 21, 437 (1950).CrossRefGoogle Scholar
24.Coble, R. L., J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
25.Burton, B., Diffusional Creep of Polycrystalline Materials (Trans. Tech. Aedermansdorf, Switzerland, 1977).Google Scholar
26.Cadek, J., Creep in Metallic Materials (Elsevier, New York, 1988).Google Scholar
27.Poirier, J. P., Creep of Crystals (Cambridge University Press, Cambridge, England, 1985).CrossRefGoogle Scholar
28.Evans, R. W. and Wilshire, B., Introduction to Creep (The Institute of Materials, England, 1993).Google Scholar
29.Sherby, O. D. and Burke, P. M., Prog. Mater. Sci. 13, 325 (1967).Google Scholar
30.Mukherjee, A. K., Bird, J.E., and Dorn, J. E., Trans. ASM 62, 155 (1969).Google Scholar
31.Cannon, W. R. and Langdon, T. G., J. Mater. Sci. 23, 1 (1988).CrossRefGoogle Scholar
32.Chokshi, A. H. and Langdon, T. G., J. Mater. Sci. Technol. 7, 577 (1991).CrossRefGoogle Scholar
33.Chokshi, A. H. and Langdon, T. G., Defect and Diffusion Forum 66–69, 1205 (1989).Google Scholar
34.Evans, A. G. and Langdon, T. G., Prog. Mater. Sci. 21, 171 (1976).CrossRefGoogle Scholar
35.Van Roosmalen, J. A. M., Van Vlaanderen, P., Cordfunke, E. H. P., Ijdo, W. L., and Ijdo, D. J. W., J. Solid State Chem. 114, 516 (1995).CrossRefGoogle Scholar
36.Beauchesne, S. and Poirier, J. P., Phys. Earth Planet. Inter. 55, 187 (1989).CrossRefGoogle Scholar
37.Beauchesne, S. and Poirier, J. P., Phys. Earth Planet. Inter. 61, 182 (1990).CrossRefGoogle Scholar
38.Karato, S. and Li, P., Science 255, 1238 (1992).CrossRefGoogle Scholar
39.Ball, A. and Hutchinson, M. M., Met. Sci. J. 3, 1 (1969).CrossRefGoogle Scholar
40.Harper, J. and Dorn, J.E., Acta Metall. 5, 654 (1957).CrossRefGoogle Scholar
41.Gibbs, G. B., Mem. Sci. Rev. Met. 62, 1679 (1965).Google Scholar
42.Parthasarathy, T. A., Mah, T., Keller, K., J. Am. Ceram. Soc. 75, 1756 (1992).CrossRefGoogle Scholar
43.Dimos, D. and Kohlstedt, D. L., J. Am. Ceram. Soc. 70, 531 (1987).CrossRefGoogle Scholar
44.Shimanovich, I. E., Pavlyuchenko, M. M., Filinov, B. O., and Prokudina, S. A., Vesti. Akad. Navuk B. SSR, Ser. Khim. Navuk 6, 61 (1969).Google Scholar
45.Ishigaki, T., Yamauchi, S., Mizusaki, J., Fueki, K., Naito, H., and Adachi, T., J. Solid State Chem. 110, 106 (1994).Google Scholar
46.Verduch, A. G. and Linder, R., Arh. Kem. 5, 313 (1953).Google Scholar
47.Yamaji, A., J. Am. Ceram. Soc. 58, 152 (1975).CrossRefGoogle Scholar
48.Paladino, A. E., Rubin, L. G., and Waugh, J.S., J. Phys. Chem. Solids 26, 391 (1965).CrossRefGoogle Scholar
49.Turlier, R., Bussier, P., and Prettre, M., C. R. Acad. Sci. Paris 250, 1649 (1960).Google Scholar
50.Sirasaki, S., Yamamura, H., Haneda, H., Kakegawa, K., and Moori, J., J. Chem. Phys. 73, 4640 (1980).CrossRefGoogle Scholar
51.Kofstad, P., Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley-Interscience, New York, 1972).Google Scholar
52.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (Wiley-Interscience, New York, 1976).Google Scholar
53.Wolfenstine, J., unpublished work.Google Scholar