Skip to main content Accessibility help

Electrospun polyacrylonitrile/magnetic Fe3O4–polyhedral oligomeric silsesquioxanes nanocomposite fibers with enhanced filter performance for electrets filter media

  • Xiaoyan Song (a1), Guoqing Cheng (a1), Bowen Cheng (a1) and Jinfeng Xing (a2)


Magnetic Fe3O4–polyhedral oligomeric silsesquioxanes (POSS) particles with Si-OH were prepared by hydrosilylation reaction between the Fe3O4–SiH and POSS with hydroxyl and vinyl groups. The magnetic Fe3O4–POSS particles were characterized by using transmission electron microscopy, scanning electron microscopy, Fourier transform infrared absorption spectroscopy, thermogravimetry, and vibrating sample magnetometry. The magnetic saturation value of Fe3O4–POSS particles was 18.77 emu/g. Polyacrylonitrile (PAN)/Fe3O4–POSS nanofibers mats were subsequently fabricated by electrospinning technique. The electret properties of PAN/Fe3O4–POSS nanofibers mats and their aerosol filtration property as electrets filter media were characterized. The stability of the surface potential was remarkably improved and the surface potential retention reached 50% for PAN/Fe3O4–POSS mats with 1 wt% Fe3O4–POSS. Compared with pure PAN, the charge retention of PAN/Fe3O4–POSS was increased by 21% and reached 52.40%. Moreover, the collection efficiency increased and the filter resistance decreased when the PAN nanofibers with Fe3O4–POSS were used as electrets filter media. Our study provided an effective method to prepare novel filter materials with high efficiency and low resistance.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Yeom, B.Y., Shim, E., and Pourdeyhimi, B.: Boehmite nanoparticles incorporated electrospun nylon-6 nanofiber web for new electret filter media. Macromol. Res. 18, 884890 (2010).
2. Leung, W.W.F., Hung, C.H., and Yuen, P.T.: Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Sep. Purif. Technol. 71, 3037 (2010).
3. Ikezaki, K. and Murata, Y.: Electret properties of ethylene–propylene random co-polymer. J. Electrost. 67, 407411 (2009).
4. Nifuku, M., Zhou, Y., Kisiel, A., Kobayashi, T., and Katoh, H.: Electret properties of polypropylene fabrics. J. Electrost. 51–52, 232238 (2001).
5. Zhang, D., Karki, A.B., Rutman, D., Young, D.P., Wang, A., Cocke, D., Ho, T.H., and Guo, Z.: Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis. Polymer 50, 41894198 (2009).
6. Park, S.H., Ryu, Y.S., and Kim, S.H.: Effect of modified silica nanoparticle on the properties of bio-based polyurethane ultrafine fibers. J. Mater. Sci. 50, 17601769 (2015).
7. Korina, E., Stoilova, O., Manolova, N., and Rashkov, I.: Poly(3-hydroxybutyrate)-based hybrid materials with photocatalytic and magnetic properties prepared by electrospinning and electrospraying. J. Mater. Sci. 49, 21442153 (2014).
8. Hillenbrand, J., Motz, T., Sessler, G.M., Zhang, X., Behrendt, N., Salis-Soglio, C., Erhard, D.P., Altstädt, V., and Schmidt, H.W.: The effect of additives on charge decay in electron-beam charged polypropylene films. J. Phys. D: Appl. Phys. 42, 065410 (2009).
9. Mohmeyer, N., Behrendt, N., Zhang, X.Q., Smith, P., Altstädt, V., and Sessler, G.M.: Additives to improve the electret properties of isotactic polypropylene. Polymer 48, 16121619 (2007).
10. Mohmeyer, N., Schmidt, H., Kristiansen, P.M., and Altsta, V.: Influence of chemical structure and solubility of bisamide additives on the nucleation of isotactic polypropylene and the improvement of its charge storage properties. Macromolecules 39, 57605767 (2006).
11. Song, X.Y., Zhou, S.Z., Wang, Y.F., Kang, W.M., and Cheng, B.W.: Mechanical and electret properties of polypropylene unwoven fabrics reinforced with POSS for electret filter materials. J. Polym. Res. 19, 9812 (2012).
12. Song, J.X., Chen, G.X., Wu, G., Cai, C.H., Liu, P.G., and Li, Q.F.: Thermal and dynamic mechanical properties of epoxy resin/poly(urethane-imide)/polyhedral oligomeric silsesquioxane nanocomposites. Macromol. Rapid. Comm. 22, 20692074 (2011).
13. Song, J.X., Jeon, J.H., Oh, K., and Park, K.C.: Electro-active polymer actuator based on sulfonated polyimide with highly conductive silver electrodes via self-metallization. Appl. Surf. Sci. 32, 15831587 (2011).
14. Ozmen, M., Can, K., Arslan, G., Tor, A., Cengeloglu, Y., and Ersoz, M.: Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Desalination 254, 162169 (2010).
15. Du, B., Mei, A., Tao, P., Zhao, B., Cao, Z., Nie, J., Xu, J., and Fan, Z.: Poly[N-isopropylacrylamide-co-3-(trimethoxysilyl)-propylmethacrylate] coated aqueous. J. Phys. Chem. C 113, 1009010096 (2009).
16. Zhang, H. and Zhu, G.: One-step hydrothermal synthesis of magnetic Fe3O4 nanoparticles immobilized on polyamide fabric. Appl. Surf. Sci. 258, 49524959 (2012).
17. Ye, X., Liu, T., Li, Q., Liu, H., and Wu, Z.: Comparison of strontium and calcium adsorption onto composite magnetic particles derived from Fe3O4 and bis(trimethoxysilylpropyl)amine. Colloids Surf., A 330, 2127 (2008).
18. Ren, J., Jia, M., Ren, T., Yuan, W., and Tan, Q.: Preparation and characterization of PNIPAAm-b-PLA/Fe3O4 thermo-responsive and magnetic composite micelles. Mater. Lett. 62, 44254427 (2008).
19. Zhu, Y., Fang, Y., and Kaskel, S.: Folate-conjugated Fe3O4@SiO2 hollow mesoporous spheres for targeted anticancer drug. J. Phys. Chem. C 114, 1638216388 (2010).
20. Wang, Z.H., Shenb, B., Aihuaa, Z., and Hea, N.: Synthesis of Pd/Fe3O4 nanoparticle-based catalyst for the cross-coupling of acrylic acid with iodobenzene. Chem. Eng. J. 113, 2734 (2005).
21. Sun, W., Li, Q., Gao, S., and Shang, J.K.: Monometallic Pd/Fe3O4 catalyst for denitrification of water. Appl. Catal., B 125, 19 (2012).
22. Qu, J., Liu, G., Wang, Y., and Hong, R.: Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv. Powder Technol. 21, 461467 (2010).
23. Wang, M., Wang, N., Tang, H., Cao, M., She, Y., and Zhu, L.: Surface modification of nano-Fe3O4 with EDTA and its use in H2O2 activation for removing organic pollutants. Catal. Sci. Technol. 2, 187 (2012).
24. Xuan, S., Wang, Y.J., Leung, K.C., and Shu, K.: Synthesis of Fe3O4@polyaniline core/shell microspheres with well-defined blackberry-like morphology. J. Phys. Chem. C 112, 1880418809 (2008).
25. Chen, L., Xu, Z., Dai, H., and Zhang, S.: Facile synthesis and magnetic properties of monodisperse Fe3O4/silica nanocomposite microspheres with embedded structures via a direct solution-based route. J. Alloys Compd. 497, 221227 (2010).
26. Lu, Z., Dai, J., Song, X., Wang, G., and Yang, W.: Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids Surf., A 317, 450456 (2008).
27. Zhang, X., Niu, H., Pan, Y., Shi, Y., and Cai, Y.: Modifying the surface of Fe3O4/SiO2 magnetic nanoparticles with C18/NH2 mixed group to get an efficient sorbent for anionic organic pollutants. J. Colloid Interface Sci. 362, 107112 (2011).
28. Moon, J.H., Kath, A.R., Pandian, S., Kolake, S.M., and Han, S.: Polyamide–POSS hybrid membranes for seawater desalination: Effect of POSS inclusion on membrane properties. J. Membr. Sci. 461, 8995 (2014).
29. Duan, J., Litwiller, E., and Pinnau, I.: Preparation and water desalination properties of POSS–polyamide nanocomposite reverse osmosis membranes. J. Membr. Sci. 473, 157164 (2015).
30. Markovic, E., Clarke, S., Matisons, J., and Simon, G.P.: Synthesis of POSS–methyl methacrylate-based cross-linked hybrid. Macromolecules 41, 16851692 (2008).
31. Gądek, A. and Szymańska-Buzar, T.: Activation of the SiH bond of silanes in photochemical reactions with W(CO)6: Hydrosilylation of ketones and dehydrosilylation of alcohol by H2SiPh2 . Polyhedron 25, 14411448 (2006).
32. Böhme, U.: Hydrosilylation vs. [2 + 2]-cycloaddition: A. theoretical study with iron, and ruthenium complexes. J. Organomet. Chem. 691, 44004410 (2006).
33. Taccardi, N., Fekete, M., Berger, M.E., Stanjek, V., Schulz, P.S., and Wasserscheid, P.: Catalyst recycling in monophasic Pt-catalyzed hydrosilylation reactions using ionic liquids. Appl. Catal., A 399, 6974 (2011).
34. Downing, C.M. and Kung, H.H.: Diethyl sulfide stabilization of platinum-complex catalysts for hydrosilylation of olefins. Catal. Commun. 12, 11661169 (2011).
35. Cano, R., Yus, M., and Ramón, D.J.: Impregnated platinum on magnetite as an efficient, fast, and recyclable catalyst for the hydrosilylation of alkynes. ACS Catal. 2, 10701078 (2012).
36. Wei, Y., Han, B., Hu, X., Lin, Y., Wang, X., and Deng, X.: Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia Eng. 27, 632637 (2012).
37. Misra, R., Fu, B.X., and Morgan, S.E.: Surface energetics, dispersion, and nanotribomechanical behavior of POSS/PP hybrid nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 45, 24412455 (2007).
38. Liang, K., Li, G., Toghiani, H., Koo, J.H., and Pittman, C.U.: Cyanate ester polyhedral oligomeric silsesquioxane (POSS) nanocomposites: Synthesis, and characterization. Chem. Mater. 18, 301312 (2006).
39. Hoyos, M., Fina, A., Carniatoc, F., Pratodand, M., and Monticelli, O.: Novel hybrid systems based on poly(propylene-g-maleic anhydride) and Ti–POSS by direct reactive blending. Polym. Degrad. Stab. 96, 17931798 (2011).
40. Lei, Z., Li, Y., and Wei, X.: Novel hybrid systems based on poly(propylene-g-maleic anhydride) and Ti–POSS by direct reactive blending. J. Solid State Chem. 181, 480486 (2008).
41. Yan, F., Zheng, X., Sun, Z., and Zhao, A.: Effect of surface modification of Fe3O4 nanoparticles on the preparation of Fe3O4/polystyrene composite particles via miniemulsion polymerization. Polym. Bull. 68, 13051314 (2011).
42. Wu, J., Ge, Q., and Mather, P.T.: PEG–POSS multiblock Polyurethanes: Synthesis, characterization, and hydrogel formation. Macromolecules 43, 76377649 (2010).
43. Zhu, Y., Kockrick, E., Ikoma, T., Hanagata, N., and Kaskel, S.: An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous. Chem. Mater. 21, 25472553 (2009).
44. He, Y.P., Wang, S.Q., Li, C.R., Miao, Y.M., Wu, Z.Y., and Zou, B.S.: Synthesis and characterization of functionalized silica-coated Fe3O4 superparamagnetic nanocrystals for biological applications. J. Phys. D: Appl. Phys. 38, 13421350 (2005).
45. Qin, S., Wang, L., Zhang, X., and G. Su, : Grafting poly(ethylene glycol)monomethacrylate onto Fe3O4 nanoparticles to resist nonspecific protein adsorption. Appl. Surf. Sci. 257, 731735 (2010).
46. Hillenbrand, J., Behrendt, N., Altstädt, V., Schmidt, H.W., and Sessler, G.M.: Electret properties of biaxially stretched polypropylene films containing various additives. J. Phys. D: Appl. Phys. 39, 535 (2006).
47. Schweers, E. and Loffler, F.: Realistic modelling of the behaviour of fibrous filters through consideration of filter structure. Powder Technol. 80, 191206 (1994).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed