Skip to main content Accessibility help
×
Home

Electrospun nylon fibers for the improvement of mechanical properties and for the control of degradation behavior of poly(lactide)-based composites

  • Ramesh Neppalli (a1), Carla Marega (a1), Antonio Marigo (a1), Madhab P. Bajgai (a2), Hak Y. Kim (a3), Suprakas Sinha Ray (a4) and Valerio Causin (a5)...

Abstract

Poly(lactide) (PLA) composites filled with electrospun nylon 6 fibers were prepared. This allowed us to simultaneously improve the mechanical properties and tune the degradation of the PLA matrix. The interfacial adhesion between the PLA matrix and the nylon fibers was good. The major effect of electrospun fibers on the matrix was that of modifying the semicrystalline framework, thickening the polymer lamellae. This allowed an increase in the mechanical properties of the material, and on the other hand to modify its degradation behavior. The modulus of the composites was increased up to 3-fold with respect to neat PLA. The peculiar morphology of matrix–filler interaction moreover slowed down the degradation rate of the material and improved the dimensional stability of the specimens during the degradation process. This shows the potential of electrospun fibers as a way to tune the durability of PLA-based products, widening the range of application of this promising material.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: valerio.causin@unipd.it

References

Hide All
1.Sinha Ray, S. and Okamoto, M.: Biodegradable polylactide and its nanocomposites: Opening a new dimension for plastics and composites. Macromol. Rapid Commun. 24, 815 (2003).
2.Sinha Ray, S. and Ramontjia, J.: Polylactide-based nanocomposites, in Biodegradable Polymers Blends and Composites from Renewable Resources, edited by Yu, L. (Wiley, Hoboken, NJ, 2009), pp. 389414.
3.Oksman, K., Skrifvars, M., and Selin, J.F.: Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 63, 1317 (2003).
4.Graupner, N., Herrmann, A.S., and Müssig, J.: Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Composites Part A 40, 810 (2009).
5.Huda, M.S., Drzal, L.T., Misra, M., and Mohanty, A.K.: Wood-fiber-reinforced poly(lactic acid) composites: Evaluation of the physicomechanical and morphological properties. J. Appl. Polym. Sci. 102, 4856 (2006).
6.Meng, Q.K., Hetzer, M., and De Kee, D.: PLA/clay/wood nanocomposites: Nanoclay effects on mechanical and thermal properties. J. Compos. Mater. 45, 1145 (2010).
7.Wang, L.S., Chen, H.C., Xiong, Z.C., Pang, X.B., and Xiong, C.D.: A completely biodegradable poly[(l-lactide)-co-(e-caprolactone)] elastomer reinforced by in situ poly(glycolic acid) fibrillation: Manufacturing and shape-memory effects. Macromol. Mater. Eng. 295, 381 (2010).
8.Suryanegara, L., Nakagaito, A.N., and Yano, H.: The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos. Sci. Technol. 69, 1187 (2009).
9.Rizvi, R., Khan, O., and Naguib, H.E.: Development and characterization of solid and porous polylactide-multiwall carbon nanotube composites. Polym. Eng. Sci. 51, 43 (2011).
10.Wu, D., Wu, L., Zhou, W., Zhang, M., and Yang, T.: Crystallization and biodegradation of polylactide/carbon nanotube composites. Polym. Eng. Sci. 50, 1721 (2010).
11.Chiu, W.M., Chang, Y.A., Kuo, H.Y., Lin, M.H., and Wen, H.C.: A study of carbon nanotubes/biodegradable plastic polylactic acid composites. J. Appl. Polym. Sci. 108, 3024 (2008).
12.Zucchelli, A., Focarete, M.L., Gualandi, C., and Ramakrishna, S.: Electrospun nanofibers for enhancing structural performance of composite materials. Polym. Adv. Technol. 22, 339 (2010).
13.Neppalli, R., Marega, C., Marigo, A., Bajgai, M.P., Kim, H.Y., and Causin, V.: Poly(epsilon-caprolactone) filled with electrospun nylon fibres: A model for a facile composite fabrication. Eur. Polym. J. 46, 968 (2010).
14.Neppalli, R., Marega, C., Marigo, A., Bajgai, M.P., Kim, H.Y., and Causin, V.: Improvement of tensile properties and tuning of the biodegradation behavior of polycaprolactone by addition of electrospun fibers. Polymer 52, 4054 (2011).
15.Swart, M., Olsson, R.T., Hedenqvist, M.S., and Mallon, P.E.: Organic–inorganic hybrid copolymer fibers and their use in silicone laminate composites. Polym. Eng. Sci. 50, 2143 (2010).
16.Kim, J.S. and Reneker, D.H.: Mechanical properties of composites using ultrafine electrospun fibers. Polym. Compos. 20, 124 (1999).
17.Bergshoef, M.M. and Vancso, G.J.: Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv. Mater. 11, 1362 (1999).
18.Bayley, G.M., Hedenqvist, M., and Mallon, P.E.: Large strain and toughness enhancement of poly(dimethyl siloxane) composite films filled with electrospun polyacrylonitrile-graft-poly(dimethyl siloxane) fibres and multi-walled carbon nanotubes. Polymer 52, 4061 (2011).
19.Matabola, K.P., de Vries, A.R., Luyt, A.S., and Kumar, R.: Studies on single polymer composites of poly(methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical properties. Express Polym. Lett. 5, 636 (2011).
20.Chen, L.S., Huang, Z.M., Dong, G.H., He, C.L., Liu, L., Hu, Y.Y., and Li, Y.: Development of a transparent PMMA composite reinforced with nanofibers. Polym. Compos. 30, 239 (2009).
21.Fong, H.: Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins. Polymer 45, 2427 (2004).
22.Tian, M., Gao, Y., Liu, Y., Liao, Y., Xu, R., Hedin, N.E., and Fong, H.: Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals. Polymer 48, 2720 (2007).
23.Hindeleh, A.M. and Johnson, D.J.: The resolution of multipeak data in fiber science. J. Phys. D: Appl. Phys. 4, 259 (1971).
24.Vonk, C.G.: Synthetic polymers in the solid state, in Small Angle X-ray Scattering, edited by Glatter, O. and Kratky, O. (Academic press, London, 1982), p. 433.
25.Blundell, D.: Models for small-angle X-ray scattering from highly dispersed lamellae. Polymer (Guildf.) 19, 1258 (1978).
26.Marega, C., Marigo, A., Cingano, G., Zannetti, R., and Paganetto, G.: Small-angle X-ray scattering from high-density polyethylene: Lamellar thickness distributions. Polymer (Guildf.) 37, 5549 (1996).
27.Marega, C., Marigo, A., and Causin, V.: Small-angle X-ray scattering from polyethylene: Distorted lamellar structures. J. Appl. Polym. Sci. 90, 2400 (2003).
28.Marega, C., Causin, V., and Marigo, A.: A SAXS-WAXD study on the mesomorphic-α transition of isotactic polypropylene. J. Appl. Polym. Sci. 109, 32 (2008).
29.Hosemann, R. and Bagchi, S.N.: Direct Analysis of Diffraction by Matter (North-Holland Pub. Co, Amsterdam, 1962).
30.Avrami, M.: Granulation, phase change, and microstructure kinetics of phase change III. J. Chem. Phys. 9, 177 (1941).
31.Lincoln, D.M., Vaia, R.A., Wang, Z.G., Hsiao, B.S., and Krishnamoorti, R.: Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites. Polymer 42, 9975 (2001).
32.Homminga, D., Goderis, B., Dolbnya, I., Reynaers, H., and Groeninckx, G.: Crystallization behavior of polymer/montmorillonite nanocomposites. Part I. Intercalated poly(ethylene oxide). Polymer 46, 11359 (2005).
33.Marega, C., Causin, V., Marigo, A., Ferrara, G., and Tonnaer, H.: Perkalite as an innovative filler for isotactic polypropylene-based nanocomposites. J. Nanosci. Nanotechnol. 9, 2704 (2009).
34.Causin, V., Yang, B.X., Marega, C., Goh, S.H., and Marigo, A.: Structure-property relationship in polyethylene reinforced by polyethylene-grafted multiwalled carbon nanotubes. J. Nanosci. Nanotech. 8, 1790 (2008).
35.Causin, V., Yang, B.X., Marega, C., Goh, S.H., and Marigo, A.: Nucleation, structure and lamellar morphology of isotactic polypropylene filled with polypropylene-grafted multiwalled carbon nanotubes. Eur. Polym. J. 45, 2155 (2009).
36.Causin, V., Marega, C., Saini, R., Marigo, A., and Ferrara, G.: Crystallization behavior of isotactic polypropylene based nanocomposites. J. Therm. Anal. Calorim. 90, 849 (2007).
37.Hambir, S., Bulakh, N., and Jog, J.P.: Polypropylene/clay nanocomposites: Effect of compatibilizer on the thermal, crystallization and dynamic mechanical behavior. Polym. Eng. Sci. 42, 1800 (2002).
38.Ma, J., Zhang, S., Qi, Z., Li, L., and Hu, Y.: Crystallization behaviors of polypropylene/montmorillonite nanocomposites. J. Appl. Polym. Sci. 83, 1978 (2002).
39.Maiti, P., Nam, P.H., Okamoto, M., Hasegawa, N., and Usuki, A.: Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules 35, 2042 (2002).
40.Causin, V., Marega, C., Marigo, A., Ferrara, G., and Ferraro, A.: Morphological and structural characterization of polypropylene/conductive graphite nanocomposites. Eur. Polym. J. 42, 3153 (2006).
41.Su, Z., Guo, W., Liu, Y., Li, Q., and Wu, C.: Non-isothermal crystallization kinetics of poly(lactic acid)/modified carbon black composite. Polym. Bull. 62, 629 (2009).
42.Huang, S.M., Hwang, J.J., Liu, H.J., and Lin, L.H.: Crystallization behavior of poly(l-lactic acid)/montmorillonite nanocomposites. J. Appl. Polym. Sci. 117, 434 (2010).
43.Li, M., Hu, D., Wang, Y., and Shen, C.: Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym. Eng. Sci. 50, 2298 (2010).
44.Dobreva, T., Perena, J.M., Pérez, E., Benavente, R., and Garcìa, M.: Crystallization behavior of poly(l-lactic acid)-based ecocomposites prepared with kenaf fiber and rice straw. Polym. Compos. 31, 974 (2010).
45.Shieh, Y.T., Twu, T.K., Su, C.C., Lin, R.H., and Liu, G.L.: Crystallization kinetics study of poly(l-lactic acid)/carbon nanotubes nanocomposites. J. Polym. Sci. B: Polym. Phys. 48, 983 (2010).
46.Mat Taib, R., Ramarad, S., Mohd Ishak, Z.A., and Todo, M.: Properties of kenaf fiber/polylactic acid biocomposites plasticized with polyethylene glycol. Polym. Compos. 31, 1213 (2010).
47.Neppalli, R., Causin, V., Marega, C., Saini, R., Mba, M., and Marigo, A.: Structure, morphology and biodegradability of poly(ε-caprolactone) based nanocomposites. Polym. Eng. Sci. (2011, in press).
48.Sinha Ray, S., Yamada, K., Okamoto, M., and Ueda, K.: New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44, 857 (2003).
49.Jollands, M. and Gupta, R.K.: Effect of mixing conditions on mechanical properties of polylactide/montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 118, 1489 (2010).
50.Di, Y., Iannace, S., Di Maio, E., and Nicolais, L.: Poly(lactic acid)/organoclay nanocomposites: Thermal, rheological properties and foam processing. J. Polym. Sci. B: Polym. Phys. 43, 689 (2005).
51.Truss, R.W. and Yeow, T.K.: Effect of exfoliation and dispersion on the yield behavior of melt-compounded polyethylene-montmorillonite nanocomposites. J. Appl. Polym. Sci. 100, 3044 (2006).
52.Pukanszky, B., Mudra, I., and Staniek, P.: Relation of crystalline structure and mechanical properties of nucleated polypropylene. J. Vinyl Add. Technol. 3, 53 (1997).
53.Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., and Kenny, J.M.: Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stab. 95, 2126 (2010).
54.Zhou, Q. and Xanthos, M.: Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym. Degrad. Stab. 93, 1450 (2008).
55.Sinha Ray, S., Yamada, K., Okamoto, M., and Ueda, K.: Control of biodegradability of polylactide via nanocomposite technology. Macromol. Mater. Eng. 288, 203 (2003).
56.Paul, M.A., Delcourt, C., Alexandre, M., Degee, P., Monteverde, F., and Dubois, P.: Polylactide/montmorillonite nanocomposites: Study of the hydrolytic degradation. Polym. Degrad. Stab. 87, 535 (2005).
57.Mei, F., Zhong, J.S., Yang, X.P., Ouyang, X.Y., Zhang, S., Hu, X.Y., Ma, Q., Lu, J.G., Ryu, S.K., and Deng, X.L.: Improved biological characteristics of poly(l-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules 8, 3729 (2007).

Keywords

Electrospun nylon fibers for the improvement of mechanical properties and for the control of degradation behavior of poly(lactide)-based composites

  • Ramesh Neppalli (a1), Carla Marega (a1), Antonio Marigo (a1), Madhab P. Bajgai (a2), Hak Y. Kim (a3), Suprakas Sinha Ray (a4) and Valerio Causin (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed