Skip to main content Accessibility help

Electronic transport and phonon properties of maximally disordered alloys: From binaries to high-entropy alloys

  • Sai Mu (a1), Zongrui Pei (a1), Xianglin Liu (a1) and George M. Stocks (a1)


Recent discoveries of multicomponent concentrated solid-solution alloys hold promise for enhanced properties—such as enhanced mechanical properties, radiation tolerance, high temperature strength, corrosion resistance and some novel functional properties, provide a new strategy for alloy design using extreme disorder. Yet, deep understanding of these intriguing properties is complicated by the very effects of disorder that make them interesting. All the desirable properties of these alloys ultimately originate from the disorder-induced properties of underlying electronic structure, lattice dynamics, and thermodynamics. Therefore, understanding the disorder-induced fundamental physical properties is prerequisite for the science-based design of this class of alloys for practical applications. Here, we elucidate the role of extreme (maximal) substitutional disorder plays in the fundamental physics of disordered alloys and review the recently developed theoretical methodologies in modeling the basic physical properties, particularly electronic structure, magnetism, electrical transport, and lattice vibrations in multicomponent concentrated solid-solution alloys.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.



Hide All
1.Yeh, J-W., Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
2.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).
3.Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).
4.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
5.Diao, H.Y., Feng, R., Dahmen, K.A., and Liaw, P.K.: Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21, 252 (2017).
6.Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).
7.Wu, Z., Bei, H., Otto, F., Pharr, G.M., and George, E.P.: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131 (2014).
8.Jin, K., Sales, B.C., Stocks, G.M., Samolyuk, G.D., Daene, M., Weber, W.J., Zhang, Y., and Bei, H.: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).
9.Sales, B.C., Jin, K., Bei, H., Stocks, G.M., Samolyuk, G.D., May, A.F., and McGuire, M.A.: Quantum critical behavior in a concentrated ternary solid solution. Sci. Rep. 6, 26179 (2016).
10.Jin, K., Mu, S., An, K., Porter, W.D., Samolyuk, G.D., Stocks, G.M., and Bei, H.: Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys. Mater. Des. 117, 185 (2017).
11.Zhang, Y., Zuo, T., Cheng, Y., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).
12.Schneeweiss, O., Friák, M., Dudová, M., Holec, D., Šob, M., Kriegner, D., Holý, V., Beran, P., George, E.P., Neugebauer, J., and Dlouhý, A.: Magnetic properties of the CrMnFeCoNi high-entropy alloy. Phys. Rev. B 96, 14437 (2017).
13.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).
14.Gludovatz, B., Hohenwarter, A., Thurston, K.V.S., Bei, H., Wu, Z., George, E.P., and Ritchie, R.O.: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).
15.Zhang, Y., Stocks, G.M., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Béland, L.K., Stoller, R.E., Samolyuk, G.D., Caro, M., Caro, A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015).
16.Lu, C., Niu, L., Chen, N., Jin, K., Yang, T., Xiu, P., Zhang, Y., Gao, F., Bei, H., Shi, S., He, M-R., Robertson, I.M., Weber, W.J., and Wang, L.: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 7, 13564 (2016).
17.Soven, P.: Coherent-potential model of substitutional disordered alloys. Phys. Rev. 156, 809 (1967).
18.Zunger, A., Wei, S-H., Ferreira, L.G., and Bernard, J.E.: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990).
19.Van de Walle, A., Asta, M., and Ceder, G.: The alloy theoretic automated toolkit: A user guide. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 26, 539 (2002).
20.Lerch, D., Wieckhorst, O., Hart, G.L.W., Forcade, R.W., and Muller, S.: UNCLE: A code for constructing cluster expansions for arbitrary lattices with minimal user-input. Model. Simul. Mater. Sci. Eng. 17, 055003 (2009).
21.Seko, A., Koyama, Y., and Tanaka, I.: Cluster expansion method for multicomponent systems based on optimal selection of structures for density-functional theory calculations. Phys. Rev. B 80, 165122 (2009).
22.Sanchez, J.M., Ducastelle, F., and Gratias, D.: Generalized cluster description of multicomponent systems. Phys. A 128, 334 (1984).
23.Wolverton, C. and De Fontaine, D.: Cluster expansions of alloy energetics in ternary intermetallics. Phys. Rev. B 49, 8627 (1994).
24.Popescu, V. and Zunger, A.: Effective band structure of random alloys. Phys. Rev. Lett. 104, 236403 (2010).
25.Ku, W., Berlijn, T., and Lee, C-C.: Unfolding first-principles band structures. Phys. Rev. Lett. 104, 216401 (2010).
26.Berlijn, T., Lin, C.H., Garber, W., and Ku, W.: Do transition-metal substitutions dope carriers in iron-based superconductors? Phys. Rev. Lett. 108, 207003 (2012).
27.Nordheim, L.: The electron theory of metals. Ann. Phys. 9, 607 (1931).
28.Muto, T.: On the electronic structure of alloys. Sci. Pap. Inst. Phys. Chem. Res. 34, 377 (1938). Gironcoli, S., Giannozzi, P., and Baroni, S.: Structure and thermodynamics of SixGe1−x alloys from ab initio Monte Carlo simulations. Phys. Rev. Lett. 66, 2116 (1991).
30.Pickett, W.E. and Singh, D.J.: Electronic structure and half-metallic transport in the La1−xCaxMnO3 system. Phys. Rev. B 53, 1146 (1996).
31.Slavenburg, P.: TiFe1−xCox alloys and the influence of antistructural atoms. Phys. Rev. 55, 110 (1997).
32.Bellaiche, L. and Vanderbilt, D.: Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B: Condens. Matter Mater. Phys. 61, 7877 (2000).
33.Stocks, G.M., Temmerman, W.M., Szotek, Z., and Sterne, P.A.: Density functional theory total energies and equilibrium volumes of La2CuO4 and La1.5Sr0.5CuO4. Supercond. Sci. Technol. 1, 57 (1988).
34.Gyorffy, B.L.: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys. Phys. Rev. B 5, 2382 (1972).
35.Korringa, J.: On the calculation of the energy of a Bloch wave in a metal. Physica 13, 392 (1947).
36.Kohn, W. and Rostoker, N.: Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium. Phys. Rev. 94, 1111 (1954).
37.Faulkner, J.S. and Stocks, G.M.: Calculating properties with the coherent-potential approximation. Phys. Rev. B 21, 3222 (1980).
38.Stocks, G.M., Temmerman, W.M., and Gyorffy, B.L.: Complete solution of the Korringa–Kohn–Rostoker coherent-potential-approximation equations: Cu–Ni alloys. Phys. Rev. Lett. 41, 339 (1978).
39.Stocks, G.M. and Butler, W.H.: Mass and lifetime enhancement due to disorder on AgcPd1−c alloys. Phys. Rev. Lett. 48, 55 (1982).
40.Ebert, H., Ködderitzsch, D., and Minár, J.: Calculating condensed matter properties using the KKR-Green’s function method—Recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011).
41.Ebert, H. et al.: The Munich SPR-KKR Package, version 7.7 (2017). Available at:
42.Mu, S., Samolyuk, G., Wimmer, S., Troparevsky, M.C., Khan, S., Mankovsky, S., Ebert, H., and Stocks, G.M.: Electron scattering mechanisms in alloys possessing extreme disorder. (arXiv:1806.03785, under Review) (2018).
43.Pindor, A.J., Staunton, J., Stocks, G.M., and Winter, H.: Disordered local moment state of magnetic transition metals: A self-consistent KKR CPA calculation. J. Phys. F: Met. Phys. 13, 979 (1983).
44.Gyorffy, B.L., Pindor, A.J., Staunton, J., Stocks, G.M., and Winter, H.: A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F: Met. Phys. 15, 1337 (1985).
45.Staunton, J., Gyorffy, B.L., Pindor, A.J., Stocks, G.M., and Winter, H.: Electronic structure of metallic ferromagnets above the Curie temperature. J. Phys. F: Met. Phys. 15, 1387 (1985).
46.Deák, A., Simon, E., Balogh, L., Szunyogh, L., Dos Santos Dias, M., and Staunton, J.B.: Metallic magnetism at finite temperatures studied by relativistic disordered moment description: Theory and applications. Phys. Rev. B: Condens. Matter Mater. Phys. 89, 224401 (2014).
47.Belashchenko, K.D., Weerasinghe, J., Mu, S., and Pujari, B.S.: Spectral signatures of thermal spin disorder and excess Mn in half-metallic NiMnSb. Phys. Rev. B: Condens. Matter Mater. Phys. 91, 180408 (2015).
48.Mankovsky, S., Polesya, S., Chadova, K., Ebert, H., Staunton, J.B., Gruenbaum, T., Schoen, M.A.W., Back, C.H., Chen, X.Z., and Song, C.: Temperature-dependent transport properties of FeRh. Phys. Rev. B 95, 155139 (2017).
49.Ebert, H., Mankovsky, S., Chadova, K., Polesya, S., Minar, J., and Koedderitzsch, D.: Calculating linear-response functions for finite temperatures on the basis of the alloy analogy model. Phys. Rev. B 91, 165132 (2015).
50.Pujari, B.S., Larson, P., Antropov, V.P., and Belashchenko, K.D.: Ab initio construction of magnetic phase diagrams in alloys: The case of Fe1−xMnxPt. Phys. Rev. Lett. 115, 057203 (2015).
51.Staunton, J.B., Ostanin, S., Razee, S.S.A., Gyorffy, B.L., Szunyogh, L., Ginatempo, B., and Bruno, E.: Temperature dependent magnetic anisotropy in metallic magnets from an ab initio electronic structure theory: L10-ordered FePt. Phys. Rev. Lett. 93, 257204 (2004).
52.Staunton, J., Szunyogh, L., Buruzs, A., Gyorffy, B., Ostanin, S., and Udvardi, L.: Temperature dependence of magnetic anisotropy: An ab initio approach. Phys. Rev. B 74, 1 (2006).
53.Zhuravlev, I.A., Antropov, V.P., and Belashchenko, K.D.: Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets. Phys. Rev. Lett. 115, 217201 (2015).
54.Vitos, L.: Total-energy method based on the exact muffin-tin orbitals theory. Phys. Rev. B: Condens. Matter Mater. Phys. 64, 014107 (2001).
55.Vitos, L., Abrikosov, I.A., and Johansson, B.: Anisotropic lattice distortions in random alloys from first-principles theory. Phys. Rev. Lett. 87, 156401 (2001).
56.Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).
57.Tian, F., Delczeg, L., Chen, N., Varga, L.K., Shen, J., and Vitos, L.: Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys. Rev. B 88, 085128 (2013).
58.Cao, P., Ni, X., Tian, F., Varga, L.K., and Vitos, L.: Ab initio study of AlxMoNbTiV high-entropy alloys. J. Phys.: Condens. Matter 27, 075401 (2015).
59.Tian, F., Varga, L.K., Chen, N., Shen, J., and Vitos, L.: Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys. J. Alloys Compd. 599, 19 (2014).
60.Tian, F., Varga, L.K., Shen, J., and Vitos, L.: Calculating elastic constants in high-entropy alloys using the coherent potential approximation: Current issues and errors. Comput. Mater. Sci. 111, 350 (2016).
61.Rowlands, D.A., Staunton, J.B., Györffy, B.L., Bruno, E., and Ginatempo, B.: Effects of short-range order on the electronic structure of disordered metallic systems. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 045101 (2005).
62.Rowlands, D.A., Ernst, A., Györffy, B.L., and Staunton, J.B.: Density functional theory for disordered alloys with short-range order: Systematic inclusion of charge-correlation effects. Phys. Rev. B: Condens. Matter Mater. Phys. 73, 165122 (2006).
63.Ködderitzsch, D., Ebert, H., Rowlands, D.A., and Ernst, A.: Relativistic formulation of the Korringa–Kohn–Rostoker nonlocal coherent-potential approximation. New J. Phys. 9, 81 (2007).
64.Rowlands, D.A.: Short-range correlations in disordered systems: Nonlocal coherent-potential approximation. Rep. Prog. Phys. 72, 086501 (2009).
65.Ashcroft, N.W. and Mermin, N.D.: Solid State Physics (Rinehart and Winston, New York, 1976).
66.Butler, W.H.: Theory of electronic transport in random alloys: Korringa–Kohn–Rostoker coherent-potential approximation. Phys. Rev. B 31, 3260 (1985).
67.Mertig, I., Zeller, R., and Dederichs, P.H.: Ab initio calculations of residual resistivities for dilute Ni alloys. Phys. Rev. B 47, 16178 (1993).
68.Mott, N.F.: Electrons in transition metals. Adv. Phys. 13, 325 (1964).
69.Fedorov, D.V., Zahn, P., Gradhand, M., and Mertig, I.: First-principles calculations of spin relaxation times of conduction electrons in Cu with nonmagnetic impurities. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 092406 (2008).
70.Fert, A. and Campbell, I.A.: Two-current conduction in nickel. Phys. Rev. Lett. 21, 1190 (1968).
71.Fert, A. and Campbell, I.A.: Electrical resistivity of ferromagnetic nickel and iron based alloys. J. Phys. F: Met. Phys. 6, 849 (1976).
72.Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988).
73.Kubo, R.: Statistical mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957).
74.Swihart, J.C., Butler, W.H., Stocks, G.M., Nicholson, D.M., and Ward, R.C.: First-principles calculation of the residual electrical resistivity of random alloys. Phys. Rev. Lett. 57, 1181 (1986).
75.Turek, I., Kudrnovský, J., Drchal, V., Szunyogh, L., and Weinberger, P.: Interatomic electron transport by semiempirical and ab initio tight-binding approaches. Phys. Rev. B 65, 125101 (2002).
76.Tulip, P.R., Staunton, J.B., Lowitzer, S., Ködderitzsch, D., and Ebert, H.: Theory of electronic transport in random alloys with short-range order: Korringa–Kohn–Rostoker nonlocal coherent potential approximation. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 165116 (2008).
77.Lowitzer, S., Ködderitzsch, D., Ebert, H., Tulip, P.R., Marmodoro, A., and Staunton, J.B.: An ab initio investigation of how residual resistivity can decrease when an alloy is deformed. Europhys. Lett. 92, 37009 (2010).
78.Banhart, J., Bernstein, R., Voitländer, J., and Weinberger, P.: Kubo and Boltzmann electrical residual resistivities of disordered transition-metal alloys. Solid State Commun. 77, 107 (1991).
79.Banhart, J., Vernes, A., and Ebert, H.: Spin-orbit interaction and spontaneous galvanomagnetic effects in ferromagnetic alloys. Solid State Commun. 98, 129 (1996).
80.Neumann, F.E.: Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers, Meyer, O.E., ed. (B.G. Teubner-Verlag, Leipzig, Germany, 1885).
81.Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., and Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).
82.Berger, L.: Side-jump mechanism for the hall effect of ferromagnets. Phys. Rev. B 2, 4559 (1970).
83.Smit, J. and Volger, J.: Spontaneous Hall effect in ferromagnetics. Phys. Rev. 92, 1576 (1953).
84.Streda, P.: Theory of quantised Hall conductivity in two dimensions. J. Phys. C: Solid State Phys. 15, L717 (1982).
85.Crépieux, A. and Bruno, P.: Theory of the anomalous Hall effect from the Kubo formula and the Dirac equation. Phys. Rev. B: Condens. Matter Mater. Phys. 64, 014416 (2001).
86.Lowitzer, S., Ködderitzsch, D., and Ebert, H.: Coherent description of the intrinsic and extrinsic anomalous Hall effect in disordered alloys on an ab initio level. Phys. Rev. Lett. 105, 266604 (2010).
87.Sinova, J., Valenzuela, S.O., Wunderlich, J., Back, C.H., and Jungwirth, T.: Spin Hall effects. Rev. Mod. Phys. 87, 1213 (2015).
88.Liu, L., Pai, C.F., Li, Y., Tseng, H.W., Ralph, D.C., and Buhrman, R.A.: Spin-torque switching with the giant spin hall effect of tantalum. Science 336, 555 (2012).
89.Vernes, A., Györffy, B.L., and Weinberger, P.: Spin currents, spin-transfer torque, and spin-Hall effects in relativistic quantum mechanics. Phys. Rev. B: Condens. Matter Mater. Phys. 76, 012408 (2007).
90.Lowitzer, S., Gradhand, M., Ködderitzsch, D., Fedorov, D.V., Mertig, I., and Ebert, H.: Extrinsic and intrinsic contributions to the spin hall effect of alloys. Phys. Rev. Lett. 106, 056601 (2011).
91.Landauer, R.: Electrical resistance of disordered one-dimensional lattices. Philos. Mag. 21, 863 (1970).
92.Büttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761 (1986).
93.Wysocki, A.L., Sabirianov, R.F., van Schilfgaarde, M., and Belashchenko, K.D.: First-principles analysis of spin-disorder resistivity of Fe and Ni. Phys. Rev. B 80, 224423 (2009).
94.Glasbrenner, J.K., Belashchenko, K.D., Kudrnovský, J., Drchal, V., Khmelevskyi, S., and Turek, I.: First-principles study of spin-disorder resistivity of heavy rare-earth metals: Gd–Tm series. Phys. Rev. B 85, 214405 (2012).
95.Liu, Y., Starikov, A.A., Yuan, Z., and Kelly, P.J.: First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 014412 (2011).
96.Glasbrenner, J.K., Pujari, B.S., and Belashchenko, K.D.: Deviations from Matthiessen’s rule and resistivity saturation effects in Gd and Fe from first principles. Phys. Rev. B 89, 174408 (2014).
97.Wang, L., Wesselink, R.J.H., Liu, Y., Yuan, Z., Xia, K., and Kelly, P.J.: Giant room temperature interface spin Hall and inverse spin Hall effects. Phys. Rev. Lett. 116, 196602 (2016).
98.Belashchenko, K.D., Glasbrenner, J.K., and Wysocki, A.L.: Spin injection from a half-metal at finite temperatures. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 224402 (2012).
99.Butler, W.H., Zhang, X., Nicholson, D., and MacLaren, J.: First-principles calculations of electrical conductivity and giant magnetoresistance of Co‖Cu‖Co spin valves. Phys. Rev. B 52, 13399 (1995).
100.Butler, W.H., Zhang, X-G., Schulthess, T.C., and Maclaren, J.M.: Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 054416 (2001).
101.Ioffe, A.F. and Regel, A.R.: Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semicond. 4, 237 (1960).
102.Mooij, J.H.: Electrical conduction in concentrated disordered transition metal alloys. Phys. Status Solidi 17, 521 (1973).
103.Gunnarsson, O., Calandra, M., and Han, J.E.: Colloquium: Saturation of electrical resistivity. Rev. Mod. Phys. 75, 1085 (2003).
104.Fultz, B.: Vibrational thermodynamics of materials. Prog. Mater. Sci. 55, 247 (2010).
105.Van De Walle, A. and Ceder, G.: The effect of lattice vibrations on substitutional alloy thermodynamics. Rev. Mod. Phys. 74, 11 (2002).
106.Taylor, D.W.: Vibrational properties of imperfect crystals with large defect concentrations. Phys. Rev. 156, 1017 (1967).
107.Wakabayashi, N.: Impurity phonon modes in Ge–Si. Phys. Rev. B 8, 6015 (1973).
108.Tsunoda, Y., Kunitomi, N., Wakabayashi, N., Nicklow, R.M., and Smith, H.G.: Phonon dispersion relations in the disordered Ni1−xPtx system. Phys. Rev. B 19, 2876 (1979).
109.Kaplan, T. and Mostoller, M.: Local modes in Al0.1Cu0.9 and (NH4)0.1K0.9Cl in the coherent-potential approximation. Phys. Rev. B 9, 353 (1974).
110.Kamitakahara, W.A. and Taylor, D.W.: Comparison of single-site approximations for the lattice dynamics of mass-disordered alloys. Phys. Rev. B 10, 1190 (1974).
111.Kaplan, T. and Mostoller, M.: Force constant and mass disorder in vibrational systems in the coherent-potential approximation. Phys. Rev. B 9, 1783 (1974).
112.Takeno, S.: A self-consistent solution of a Dyson equation in many-impurity problems in solids. Phys. Lett. A 26, 547 (1968).
113.Nickel, B.G. and Butler, W.H.: Problems in strong-scattering binary alloys. Phys. Rev. Lett. 30, 373 (1973).
114.Gonis, A. and Garland, J.W.: Multishell method: Exact treatment of a cluster in an effective medium. Phys. Rev. B 16, 2424 (1977).
115.Ghosh, S., Leath, P.L., and Cohen, M.H.: Phonons in random alloys: The itinerant coherent-potential approximation. Phys. Rev. B 66, 214206 (2002).
116.Dutta, B. and Ghosh, S.: Vibrational properties of NixPt1−x alloys: An understanding from ab initio calculations. J. Appl. Phys. 109, 053714 (2011).
117.Alam, A., Ghosh, S., and Mookerjee, A.: Phonons in disordered alloys: Comparison between augmented-space-based approximations for configuration averaging to integration from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 75, 134202 (2007).
118.Dutta, B. and Ghosh, S.: The phonon spectra and elastic constants of PdxFe1−x: An understanding from inter-atomic interactions. J. Phys.: Condens. Matter 21, 095411 (2009).
119.Dutta, B., Bisht, K., and Ghosh, S.: Ab initio calculation of phonon dispersions in size-mismatched disordered alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 82, 134207 (2010).
120.Alam, A. and Mookerjee, A.: Vibrational properties of phonons in random binary alloys: An augmented space recursive technique in the k representation. Phys. Rev. B: Condens. Matter Mater. Phys. 69, 024205 (2004).
121.Alam, A., Chouhan, R.K., and Mookerjee, A.: Phonon modes and vibrational entropy of disordered alloys with short-range order: A first-principles calculation. Phys. Rev. B: Condens. Matter Mater. Phys. 83, 054201 (2011).
122.Boykin, T.B. and Klimeck, G.: Practical application of zone-folding concepts in tight-binding calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 71, 115215 (2005).
123.Boykin, T.B., Kharche, N., Klimeck, G., and Korkusinski, M.: Approximate bandstructures of semiconductor alloys from tight-binding supercell calculations. J. Phys.: Condens. Matter 19, 36203 (2007).
124.Allen, P.B., Berlijn, T., Casavant, D.A., and Soler, J.M.: Recovering hidden Bloch character: Unfolding electrons, phonons, and slabs. Phys. Rev. B 87, 85322 (2013).
125.Ikeda, Y., Carreras, A., Seko, A., Togo, A., and Tanaka, I.: Mode decomposition based on crystallographic symmetry in the band-unfolding method. Phys. Rev. B 95, 24305 (2017).
126.Delaire, O., Al-Qasir, I.I., May, A.F., Li, C.W., Sales, B.C., Niedziela, J.L., Ma, J., Matsuda, M., Abernathy, D.L., and Berlijn, T.: Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe1−xMxSi (M = Ir, Os). Phys. Rev. B: Condens. Matter Mater. Phys. 91, 094307 (2015).
127.Ikeda, Y., Körmann, F., Dutta, B., Carreras, A., Seko, A., Neugebauer, J., and Tanaka, I.: Temperature-dependent phonon spectra of magnetic random solid solutions. npj Comput. Mater. 4, 7 (2018).
128.Körmann, F., Ikeda, Y., Grabowski, B., and Sluiter, M.H.F.: Phonon broadening in high entropy alloys. npj Comput. Mater. 3, 36 (2017).
129.Kanzaki, H.: Point defects in face-centred cubic lattice-I distortion around defects. J. Phys. Chem. Solids 2, 24 (1957).
130.Matsubara, T.: Theory of diffuse scattering of X-rays by local lattice distortions. J. Phys. Soc. Jpn. 7, 270 (1952).
131.Zhuravlev, I.A., An, J.M., and Belashchenko, K.D.: Microscopic first-principles model of strain-induced interaction in concentrated size-mismatched alloys. Phys. Rev. B 90, 214108 (2014).
132.Rubini, S. and Ballone, P.: Quasiharmonic and molecular-dynamics study of the martensitic transformation in Ni–Al alloys. Phys. Rev. B 48, 99 (1993).
133.Souvatzis, P., Eriksson, O., Katsnelson, M.I., and Rudin, S.P.: Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys. Rev. Lett. 100, 095901 (2008).
134.Leonov, I., Poteryaev, A.I., Anisimov, V.I., and Vollhardt, D.: Calculated phonon spectra of paramagnetic iron at the α–γ Phase transition. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 020401 (2012).
135.Körmann, F., Dick, A., Grabowski, B., Hickel, T., and Neugebauer, J.: Atomic forces at finite magnetic temperatures: Phonons in paramagnetic iron. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 125104 (2012).
136.Steneteg, P., Alling, B., and Abrikosov, I.A.: Equation of state of paramagnetic CrN from ab initio molecular dynamics. Phys. Rev. B 85, 1 (2012).
137.Körmann, F., Grabowski, B., Dutta, B., Hickel, T., Mauger, L., Fultz, B., and Neugebauer, J.: Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment. Phys. Rev. Lett. 113, 165503 (2014).
138.Alling, B., Hultberg, L., Hultman, L., and Abrikosov, I.A.: Strong electron correlations stabilize paramagnetic cubic Cr1−xAlxN solid solutions. Appl. Phys. Lett. 102, 031910 (2013).
139.Hellman, O. and Abrikosov, I.A.: Temperature-dependent effective third-order interatomic force constants from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 144301 (2013).
140.Hellman, O., Abrikosov, I.A., and Simak, S.I.: Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 180301 (2011).
141.Shulumba, N., Alling, B., Hellman, O., Mozafari, E., Steneteg, P., Odén, M., and Abrikosov, I.A.: Vibrational free energy and phase stability of paramagnetic and antiferromagnetic CrN from ab initio molecular dynamics. Phys. Rev. B: Condens. Matter Mater. Phys. 89, 174108 (2014).
142.Allen, P.B., Feldman, J.L., Fabian, J., and Wooten, F.: Diffusons, locons and propagons: Character of atomie yibrations in amorphous Si. Philos. Mag. B 79, 1715 (1999).
143.Seyf, H.R., Yates, L., Bougher, T.L., Graham, S., Cola, B.A., Detchprohm, T., Ji, M-H., Kim, J., Dupuis, R., Lv, W., and Henry, A.: Rethinking phonons: The issue of disorder. npj Comput. Mater. 3, 49 (2017).


Related content

Powered by UNSILO

Electronic transport and phonon properties of maximally disordered alloys: From binaries to high-entropy alloys

  • Sai Mu (a1), Zongrui Pei (a1), Xianglin Liu (a1) and George M. Stocks (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.