Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-29T15:25:56.706Z Has data issue: false hasContentIssue false

Electronic Structures and Host Excitation of LaPO4, La2O3, and AlPO4

Published online by Cambridge University Press:  31 January 2011

K. C. Mishra
Affiliation:
Central Research, OSRAM SYLVANIA INC., 71 Cherry Hill Drive, Beverly, Massachusetts 01915
I. Osterloh
Affiliation:
Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Darmstadt, Germany
H. Anton
Affiliation:
Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Darmstadt, Germany
B. Hannebauer
Affiliation:
Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Darmstadt, Germany
P. C. Schmidt
Affiliation:
Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Darmstadt, Germany
K. H. Johnson
Affiliation:
Department of Materials Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

We report the electronic structures and associated optical properties of three inorganic oxides, namely lanthanum oxide, aluminum phosphate, and lanthanum phosphate, calculated by the first principles augmented spherical wave (ASW) and full potential linear muffin tin orbital (FP-LMTO) band structure methods, and the self-consistent field Xα scattered wave (Xα SW) molecular orbital cluster approach. Our calculations indicate negligible effect of the choice of exchange correlation potentials on the position, shape, and relative ordering of the energy bands. The ASW energy gaps in lanthanum phosphate and aluminum phosphate agree satisfactorily with the measured values. A comparison of the electronic density of states for an isolated phosphate group from molecular orbital calculation and that of the valance band from the band structure methods indicates that the nature of bonding within the phosphate groups does not change in aluminum and lanthanum phosphates. The states near the top of the valence band and bottom of the conduction band are mostly due to the phosphate bonding and antibonding orbitals, indicating that optical absorption near the band edge involves excitation of electrons from the bonding levels to antibonding levels associated with phosphate groups. This explains why the optical gaps in many rare earth phosphates are nearly equal.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mishra, K. C. and Johnson, K. H., in Scintillator and Phosphor Materials, edited by Weber, M. J., Lecoq, P., Ruchti, R. C., Woody, C., Yen, W. M., and Zhu, R. (Mater. Res. Soc. Symp. Proc. 348, Pittsburgh, PA, 1994), p. 367.Google Scholar
2.Slater, J. C. and Johnson, K. H., Phys. Rev. B 5, 844 (1972); K. H. Johnson and F. C. Smith, Jr., ibid. 5, 831 (1972).CrossRefGoogle Scholar
3.Williams, A. R., Kübler, J., and Gelatt, C. D., Jr., Phys. Rev. B 19, 6094 (1979).CrossRefGoogle Scholar
4.Methfessel, M., Phys. Rev. B 38, 1537 (1988).CrossRefGoogle Scholar
5.Mishra, K. C., Schmidt, P. C., Johnson, K. H., Berkowitz, J., and Dale, E. A., Phys. Rev. B 42, 1423 (1990); K. C. Mishra, P. C. Schmidt, B. G. DeBoer, J. Olsen, and E. A. Dale, ibid. 43, 14188 (1991).CrossRefGoogle Scholar
6.Nakazawa, E. and Shiga, F. J., Luminesce. 15, 255 (1977).CrossRefGoogle Scholar
7.Slater, J. C., in The Self-consistent Field for Molecules and Solids (McGraw-Hill, New York, 1974), Vol. 4, p. 87.Google Scholar
8.von Barth, U. and Hedin, L., J. Phys. C. 5, 1629 (1972).CrossRefGoogle Scholar
9.Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
10.Mishra, K. C., Johnson, K. H., and Schmidt, P. C., J. Phys. Chem. Solids 54, 237 (1993).CrossRefGoogle Scholar
11.Trukhin, A. N., Solid State Commun. 90, 761 (1994); L. N. Demianetz, O. V. Zvereva, J. M. Mininsow, V. A. Nikitenko, A. P. Pruntzev, T. I. Savikhina, and S. G. Stojukhin, Kristallografiya 37, 169 (1992).CrossRefGoogle Scholar