Skip to main content Accessibility help

Electronic structure of designed [(SnSe)1+δ]m[TiSe2]2 heterostructure thin films with tunable layering sequence

  • Fabian Göhler (a1), Danielle M. Hamann (a2), Niels Rösch (a1), Susanne Wolff (a1), Jacob T. Logan (a2), Robert Fischer (a2), Florian Speck (a1), David C. Johnson (a2) and Thomas Seyller (a1)...


A series of ${\left\hbox[ {{{\left\hbox( {{\rm{SnSe}}} \right\hbox)}_{1 \hbox+ \delta }}} \right\hbox]_m}{\left\hbox[ {{\rm{TiS}}{{\rm{e}}_2}} \right\hbox]_2}$ heterostructure thin films built up from repeating units of m bilayers of SnSe and two layers of TiSe2 were synthesized from designed precursors. The electronic structure of the films was investigated using X-ray photoelectron spectroscopy for samples with m = 1, 2, 3, and 7 and compared to binary samples of TiSe2 and SnSe. The observed binding energies of core levels and valence bands of the heterostructures are largely independent of m. For the SnSe layers, we can observe a rigid band shift in the heterostructures compared to the binary, which can be explained by electron transfer from SnSe to TiSe2. The electronic structure of the TiSe2 layers shows a more complicated behavior, as a small shift can be observed in the valence band and Se3d spectra, but the Ti2p core level remains at a constant energy. Complementary UV photoemission spectroscopy measurements confirm a charge transfer mechanism where the SnSe layers donate electrons into empty Ti3d states at the Fermi energy.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Geim, A.K. and Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419 (2013).
2.Ferrari, A.C., Bonaccorso, F., Fal’ko, V., Novoselov, K.S., Roche, S., Bøggild, P., Borini, S., Koppens, F.H.L., Palermo, V., Pugno, N., Garrido, J.A., Sordan, R., Bianco, A., Ballerini, L., Prato, M., Lidorikis, E., Kivioja, J., Marinelli, C., Ryhänen, T., Morpurgo, A., Coleman, J.N., Nicolosi, V., Colombo, L., Fert, A., Garcia-Hernandez, M., Bachtold, A., Schneider, G.F., Guinea, F., Dekker, C., Barbone, M., Sun, Z., Galiotis, C., Grigorenko, A.N., Konstantatos, G., Kis, A., Katsnelson, M., Vandersypen, L., Loiseau, A., Morandi, V., Neumaier, D., Treossi, E., Pellegrini, V., Polini, M., Tredicucci, A., Williams, G.M., Hong, B.H., Ahn, J-H., Kim, J.M., Zirath, H., van Wees, B.J., van der Zant, H., Occhipinti, L., Matteo, A.D., Kinloch, I.A., Seyller, T., Quesnel, E., Feng, X., Teo, K., Rupesinghe, N., Hakonen, P., Neil, S.R.T., Tannock, Q., Löfwander, T., and Kinaret, J.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598 (2015).
3.Kuc, A., Heine, T., and Kis, A.: Electronic properties of transition-metal dichalcogenides. MRS Bull. 40, 577 (2015).
4.Robinson, J.A.: Growing vertical in the flatland. ACS Nano 10, 42 (2016).
5.Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., and Kim, K.: A roadmap for graphene. Nature 490, 192 (2012).
6.Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., and Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722 (2010).
7.Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T., and Geim, A.K.: Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396 (2011).
8.Grosse, C., Alemayehu, M.B., Mogilatenko, A., Chiatti, O., Johnson, D.C., and Fischer, S.F.: Superconducting tin selenide/niobium diselenide ferecrystals. Cryst. Res. Technol. 52, 1700126 (2017).
9.Kang, K., Lee, K-H., Han, Y., Gao, H., Xie, S., Muller, D.A., and Park, J.: Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229 (2017).
10.Wiegers, G.: Misfit layer compounds: Structures and physical properties. Prog. Solid State Chem. 24, 1 (1996).
11.Rouxel, J., Meerschaut, A., and Wiegers, G.: Chalcogenide misfit layer compounds. J. Alloys Compd. 229, 144 (1995).
12.Merrill, D., Moore, D., Bauers, S., Falmbigl, M., and Johnson, D.: Misfit layer compounds and ferecrystals: Model systems for thermoelectric nanocomposites. Materials 8, 2000 (2015).
13.Withers, F., Pozo-Zamudio, O.D., Mishchenko, A., Rooney, A.P., Gholinia, A., Watanabe, K., Taniguchi, T., Haigh, S.J., Geim, A.K., Tartakovskii, A.I., and Novoselov, K.S.: Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301 (2015).
14.Novoselov, K.S., Mishchenko, A., Carvalho, A., and Neto, A.H.C.: 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
15.Liu, Y., Weiss, N.O., Duan, X., Cheng, H-C., Huang, Y., and Duan, X.: Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
16.Esters, M., Alemayehu, M.B., Jones, Z., Nguyen, N.T., Anderson, M.D., Grosse, C., Fischer, S.F., and Johnson, D.C.: Synthesis of inorganic structural isomers by diffusion-constrained self-assembly of designed precursors: A novel type of isomerism. Angew. Chem., Int. Ed. 54, 1130 (2015).
17.Westover, R., Atkins, R.A., Falmbigl, M., Ditto, J.J., and Johnson, D.C.: Self-assembly of designed precursors: A route to crystallographically aligned new materials with controlled nanoarchitecture. J. Solid State Chem. 236, 173 (2016).
18.Beekman, M., Heideman, C.L., and Johnson, D.C.: Ferecrystals: Non-epitaxial layered intergrowths. Semicond. Sci. Technol. 29, 064012 (2014).
19.Wan, C., Wang, Y., Wang, N., and Koumoto, K.: Low-thermal-conductivity (MS)1+x(TiS2)2 (M = Pb, Bi, Sn) misfit layer compounds for bulk thermoelectric materials. Materials 3, 2606 (2010).
20.Merrill, D.R., Moore, D.B., Ditto, J., Sutherland, D.R., Falmbigl, M., Winkler, M., Pernau, H-F., and Johnson, D.C.: The synthesis, structure, and electrical characterization of (SnSe)1.2(TiSe)2. Eur. J. Inorg. Chem. 2015, 83 (2015).
21.Li, Z., Bauers, S.R., Poudel, N., Hamann, D., Wang, X., Choi, D.S., Esfarjani, K., Shi, L., Johnson, D.C., and Cronin, S.B.: Cross-plane Seebeck coefficient measurement of misfit layered compounds (SnSe)n(TiSe2)n (n = 1, 3, 4, 5). Nano Lett. 17, 1978 (2017).
22.Hamann, D.M., Merrill, D.R., Bauers, S.R., Mitchson, G., Ditto, J., Rudin, S.P., and Johnson, D.C.: Long-range order in [(SnSe)1.2]1[TiSe2]1 prepared from designed precursors. Inorg. Chem. 56, 3499 (2017).
23.Hamann, D.M., Lygo, A.C., Esters, M., Merrill, D.R., Ditto, J., Sutherland, D.R., Bauers, S.R., and Johnson, D.C.: Structural changes as a function of thickness in [(SnSe)1+δ]mTiSe2 heterostructures. ACS Nano 12, 1285 (2018).
24.Morosan, E., Zandbergen, H.W., Dennis, B.S., Bos, J.W.G., Onose, Y., Klimczuk, T., Ramirez, A.P., Ong, N.P., and Cava, R.J.: Superconductivity in CuxTiSe2. Nat. Phys. 2, 544 (2006).
25.Morosan, E., Wagner, K.E., Zhao, L.L., Hor, Y., Williams, A.J., Tao, J., Zhu, Y., and Cava, R.J.: Multiple electronic transitions and superconductivity in PdxTiSe2. Phys. Rev. B 81, 094524 (2010).
26.Göhler, F., Mitchson, G., Alemayehu, M.B., Speck, F., Wanke, M., Johnson, D.C., and Seyller, T.: Charge transfer in (PbSe)1+δ(NbSe2)2 and (SnSe)1+δ(NbSe2)2 ferecrystals investigated by photoelectron spectroscopy. J. Phys.: Condens. Matter 30, 055001 (2018).
27.Johnson, D.C.: Controlled synthesis of new compounds using modulated elemental reactants. Curr. Opin. Solid State Mater. Sci. 3, 159 (1998).
28.Hamann, D.M., Bardgett, D., Cordova, D.L.M., Maynard, L.A., Hadland, E.C., Lygo, A.C., Wood, S.R., Esters, M., and Johnson, D.C.: Sub-monolayer accuracy in determining the number of atoms per unit area in ultrathin films using X-ray fluorescence. Chem. Mater. 30, 6209 (2018).
29.Moore, D.B., Sitts, L., Stolt, M.J., Beekman, M., and Johnson, D.C.: Characterization of nonstoichiometric Ti1+xSe2 prepared by the method of modulated elemental reactants. J. Electron. Mater. 42, 1647 (2013).
30.Chen, J., Hamann, D.M., Choi, D., Poudel, N., Shen, L., Shi, L., Johnson, D.C., and Cronin, S.: Enhanced cross-plane thermoelectric transport of rotationally disordered SnSe2 via Se-vapor annealing. Nano Lett. 18, 6876 (2018).
31.Makinistian, L. and Albanesi, E.A.: On the band gap location and core spectra of orthorhombic IV–VI compounds SnS and SnSe. Phys. Status Solidi B 246, 183 (2009).
32.Rasch, J.C.E., Stemmler, T., Müller, B., Dudy, L., and Manzke, R.: 1T-TiSe2: Semimetal or semiconductor? Phys. Rev. Lett. 101, 237602 (2008).
33.Doniach, S. and Sunjic, M.: Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C: Solid State Phys. 3, 285 (1970).
34.Mahan, G.D.: Collective excitations in X-ray spectra of metals. Phys. Rev. B 11, 4814 (1975).
35.Shkvarin, A.S., Yarmoshenko, Y.M., Skorikov, N.A., Yablonskikh, M.V., Merentsov, A.I., Shkvarina, E.G., and Titov, A.N.: Electronic structure of titanium dichalcogenides TiX2 (X = S, Se, Te). J. Exp. Theor. Phys. 114, 150 (2012).
36.Shirley, D.A.: High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709 (1972).
37.Ohta, T., Bostwick, A., McChesney, J.L., Seyller, T., Horn, K., and Rotenberg, E.: Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 98, 206802 (2007).
38.Bostwick, A., Ohta, T., McChesney, J.L., Emtsev, K.V., Seyller, T., Horn, K., and Rotenberg, E.: Symmetry breaking in few layer graphene films. New J. Phys. 9, 385 (2007).
39.Emtsev, K.V., Speck, F., Seyller, T., Ley, L., and Riley, J.D.: Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 77, 155303 (2008).
40.Brandt, J., Kipp, L., Skibowski, M., Krasovskii, E., Schattke, W., Spiecker, E., Dieker, C., and Jäger, W.: Charge transfer in misfit layered compounds. Surf. Sci. 532, 705 (2003).
41.Shalvoy, R., Fisher, G., and Stiles, P.: X-ray photoemission studies of the valence bands of nine IV–VI compounds. Phys. Rev. B 15, 2021 (1977).
42.Giang, N., Xu, Q., Hor, Y.S., Williams, A.J., Dutton, S.E., Zandbergen, H.W., and Cava, R.J.: Superconductivity at 2.3 K in the misfit compound(PbSe)1.16(TiSe2)2. Phys. Rev. B 82, 024503 (2010).
43.Moore, D.B., Beekman, M., Disch, S., Zschack, P., Häusler, I., Neumann, W., and Johnson, D.C.: Synthesis, structure, and properties of turbostratically disordered (PbSe)1.18(TiSe2)2. Chem. Mater. 25, 2404 (2013).
44.Schröder, U.A., Petrović, M., Gerber, T., Martínez-Galera, A.J., Grånäs, E., Arman, M.A., Herbig, C., Schnadt, J., Kralj, M., Knudsen, J., and Michely, T.: Core level shifts of intercalated graphene. 2D Mater. 4, 015013 (2017).
45.Esters, M.: Deposition software for the inficon IC6 deposition controller (2018). Available at: (accessed December 04, 2018).


Related content

Powered by UNSILO

Electronic structure of designed [(SnSe)1+δ]m[TiSe2]2 heterostructure thin films with tunable layering sequence

  • Fabian Göhler (a1), Danielle M. Hamann (a2), Niels Rösch (a1), Susanne Wolff (a1), Jacob T. Logan (a2), Robert Fischer (a2), Florian Speck (a1), David C. Johnson (a2) and Thomas Seyller (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.